نتایج جستجو برای: random normed space

تعداد نتایج: 760112  

2008
Ulrich G. Schuster

Normed Space [1, 2, §2]. A norm ‖·‖ on a linear space (U ,F) is a mapping ‖·‖ : U → [0,∞) that satisfies, for all u,v ∈ U , α ∈ F , 1. ‖u‖ = 0 ⇐⇒ u = 0. 2. ‖αu‖ = |α| ‖u‖. 3. Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖. A norm defines a metric d(u,v) := ‖u− v‖ on U . A normed (linear) space (U , ‖·‖) is a linear space U with a norm ‖·‖ defined on it. • The norm is a continuous mapping of U into R+. ...

2016
Jordan Bell

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...

Journal: :مجله علوم آماری 0
محمدرضا فریدروحانی mohammad reza farid rohani department of statistics, shahid beheshti university, tehran, iran.گروه آمار، دانشگاه شهید بهشتی خلیل شفیعی هولیقی khalil shafiei holighi department of statistics, shahid beheshti university, tehran, iran.گروه آمار، دانشگاه شهید بهشتی

in recent years, some statisticians have studied the signal detection problem by using the random field theory. in this paper we have considered point estimation of the gaussian scale space random field parameters in the bayesian approach. since the posterior distribution for the parameters of interest dose not have a closed form, we introduce the markov chain monte carlo (mcmc) algorithm to ap...

2009
M. I. Ostrovskii

Let BY denote the unit ball of a normed linear space Y . A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y , there exists a linear projection P : Y → X such that P (BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlar...

2001
A. B. THAHEEM ABDUL RAHIM KHAN

A mapping α from a normed space X into itself is called a Banach operator if there is a constant k such that 0≤ k < 1 and ‖α2(x)−α(x)‖ ≤ k‖α(x)−x‖ for all x ∈X. In this note we study some properties of Banach operators. Among other results we show that if α is a linear Banach operator on a normed space X, then N(α−1) = N((α−1)2), N(α−1)∩R(α−1)= (0) and if X is finite dimensional then X =N(α−1)⊕...

2008
M. I. Ostrovskii

Let BY denote the unit ball of a normed linear space Y . A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y , there exists a linear projection P : Y → X such that P (BY ) ⊂ A. The main results of the paper: (1) Each minimal-volume sufficient enlargem...

2010
LEOPOLDO NACHBIN

Every continuous linear functional defined on a vector subspace of a real normed space can be extended to the whole space so as to remain linear and continuous, and with the same norm(2). The extension of continuous linear transformations between two real normed spaces has been studied by several authors and for a long time it has been recognized that this problem has a close connection with th...

2007
Yasunari Shidama

Let X be a non empty normed structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed right complementa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید