Given an integer r ≥ 2 and a number υ ∈ (0, 1], consider the collection of all subsets of Z/rZ having at least υr elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod r). Note that this includes trivial p...