نتایج جستجو برای: radial basis function rbf

تعداد نتایج: 1583750  

Journal: :Journal of Physics A 2023

Abstract The radial basis function (RBF) method is widely used for the numerical solution of Poisson problem in high dimension, where approximate can be found by solving a large system linear equations. We demonstrate that RBF accelerated on quantum computer using an efficient algorithm compare theoretical performance our with standard classical algorithm, and find achieve polynomial speedup.

2013
VACLAV SKALA

Interpolation or approximation of scattered data is very often task in engineering problems. The Radial Basis Functions (RBF) interpolation is convenient for scattered (un-ordered) data sets in k-dimensional space, in general. This approach is convenient especially for a higher dimension k > 2 as the conversion to an ordered data set, e.g. using tessellation, is computationally very expensive. ...

2005
ALVISE SOMMARIVA ROBERT S. WOMERSLEY

In this paper we consider numerical integration over the sphere by radial basis functions (RBF). After a brief introduction on RBF and spherical radial basis functions (SRBF), we show how to compute integrals of functions whose values are known at scattered data points. Numerical examples are given.

2009
E. A. Zanaty Sultan Hamadi Aljahdali R. J. Cripps

In this paper, a new kernel function is introduced that improves the classification accuracy of support vector machines (SVMs) for both linear and non-linear data sets. The proposed kernel function, called Gauss radial basis polynomial function (RBPF) combine both Gauss radial basis function (RBF) and polynomial (POLY) kernels. It is shown that the proposed kernel converges faster than the RBF ...

1991
Elliot Singer Richard P. Lippmann

A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...

Journal: :CoRR 2014
Khairul Azha A. Aziz Shahrum Shah bin Abdullah

This paper presented a face detection system using Radial Basis Function Neural Networks With Fixed Spread Value. Face detection is the first step in face recognition system. The purpose is to localize and extract the face region from the background that will be fed into the face recognition system for identification. General preprocessing approach was used for normalizing the image and Radial ...

2010
YEON JU LEE JUNGHO YOON

The local radial basis function (RBF) interpolation method enables very large-scale data sets to be handled efficiently, overcoming the drawbacks of global interpolation which produces highly ill-conditioned linear systems. Whereas there have been intensive studies on the accuracy of global RBF interpolation, the error analysis of local RBF interpolation is much less investigated. In this regar...

2009
Jianming Lian Stanislaw H. Żak

Novel direct adaptive robust state and output feedback controllers are presented for the output tracking control of a class of nonlinear systems with unknown system dynamics and disturbances. Both controllers employ a variable-structure radial basis function (RBF) network that can determine its structure dynamically to approximate unknown system dynamics. Radial basis functions are added or rem...

Journal: :IEEE transactions on neural networks 1996
Adam Krzyzak Tamás Linder Gábor Lugosi

Studies convergence properties of radial basis function (RBF) networks for a large class of basis functions, and reviews the methods and results related to this topic. The authors obtain the network parameters through empirical risk minimization. The authors show the optimal nets to be consistent in the problem of nonlinear function approximation and in nonparametric classification. For the cla...

2007
Ulrich Rückert Ralf Eickhoff

Using radial basis function networks for function approximation tasks suffers from unavailable knowledge about an adequate network size. In this work, a measuring technique is proposed which can control the model complexity and is based on the correlation coefficient between two basis functions. Simulation results show good performance and, therefore, this technique can be integrated in the RBF...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید