نتایج جستجو برای: quantum dot cellular
تعداد نتایج: 744987 فیلتر نتایج به سال:
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...
Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
Electronic transport has been investigated in four-quantum-dot combination coupled to metal electrodes using the non-equilibrium Green’s function method, and curves I-V and conductance (dI/dV) were analyzed for special combination. We have showed that the emergence of negative differential conductivity is due to asymmetric distribution of quantum dots in the central region, existence of non-cou...
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید