نتایج جستجو برای: particle swarm algorithms

تعداد نتایج: 501446  

2013
Kyle Robert Harrison Beatrice M. Ombuki-Berman Andries Petrus Engelbrecht

Vector evaluated particle swarm optimization (VEPSO) is a multi-swarm variant of the traditional particle swarm optimization (PSO) algorithm applied to multi-objective problems (MOPs). Each subobjective is allocated a single sub-swarm and knowledge transfer strategies (KTSs) are used to pass information between swarms. The original VEPSO used a ring KTS, and while VEPSO has shown to be successf...

Journal: :European Journal of Operational Research 2017
Yannis Marinakis Athanasios Migdalas Angelo Sifaleras

In this paper, a well known NP-hard problem, the Constrained Shortest Path problem, is studied. As efficient metaheuristic approaches are required for its solution, a new hybridized version of Particle Swarm Optimization algorithm with Variable Neighborhood Search is proposed for solving this significant combinatorial optimization problem. Particle Swarm Optimization (PSO) is a population-based...

2011
Michiharu Maeda Shinya Tsuda

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization...

Journal: :CoRR 2016
Timothy Ganesan I. Elamvazuthi Pandian Vasant

Multi objective (MO) optimization is an emerging field which is increasingly being implemented in many industries globally. In this work, the MO optimization of the extraction process of bioactive compounds from the Gardenia Jasminoides Ellis fruit was solved. Three swarm-based algorithms have been applied in conjunction with normal-boundary intersection (NBI) method to solve this MO problem. T...

Journal: :European Journal of Operational Research 2007
Haluk Yapicioglu Alice E. Smith Gerry V. Dozier

In this paper, a new model for the semi-obnoxious facility location problem is introduced. The new model is composed of a weighted minisum function to represent the transportation costs and a distance-based piecewise function to represent the obnoxious effects of the facility. A single-objective particle swarm optimizer (PSO) and a bi-objective PSO are devised to solve the problem. Results are ...

2011
Mohammad Majid al-Rifaie

In this work, a novel approach of merging two swarm intelligence algorithms is considered – one mimicking the behaviour of ants foraging (Stochastic Diffusion Search [5]) and the other algorithm simulating the behaviour of birds flocking (Particle Swarm Optimisation [17]). This hybrid algorithm is assisted by a mechanism inspired from the behaviour of skeletal muscles activated by motor neurons...

2011
Xin-She Yang

Metaheuristic algorithms are becoming an important part of modern optimization. A wide range of metaheuristic algorithms have emerged over the last two decades, and many metaheuristics such as particle swarm optimization are becoming increasingly popular. Despite their popularity, mathematical analysis of these algorithms lacks behind. Convergence analysis still remains unsolved for the majorit...

Journal: :تحقیقات مالی 0
مهسا رجبی دانشجوی دکتری برق ـ کنترل و سیستم، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران حمید خالوزاده استاد دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

despite the growing use of evolutionary multi-objective optimization algorithms in different categories of science, these algorithms as a powerful tool in portfolio optimization and specially solving multi-objective portfolio optimization problem is still in its early stages. in this paper, moeas have been used for solving multi-objective portfolio optimization problem in tehran stock market. f...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید