نتایج جستجو برای: pamp triggered immunity
تعداد نتایج: 138583 فیلتر نتایج به سال:
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS throug...
Chloride channel (CLC) family genes are ubiquitous from prokaryotes to eukaryotes and encode proteins with both channel and transporter activities. The Arabidopsis thaliana genome encodes seven CLC genes, and their products are found in a variety of cellular compartments and have various physiological functions. However, a role for AtCLCs in plant innate immunity has not previously been demonst...
Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models o...
MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMP...
The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elu...
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice ...
The plant pathogen Pseudomonas syringae pv.tomato (DC3000) causes virulence by delivering effector proteins into host plant cells through its type three secretion system (T3SS). In response to the plant environment DC3000 expresses hypersensitive response and pathogenicity genes (hrp). Pathogenesis depends on the ability of the pathogen to manipulate the plant metabolism and to inhibit plant im...
Abstract Recognition of pathogen-associated molecular patterns (PAMPs) such as flagellin, a main component of the bacterial flagellum, constitutes the first layer of plant immunity and is referred to as PAMP-triggered immunity (PTI). The rice avirulent N1141 strain of gram-negative phytopathogenic bacterium, Acidovorax avenae, induces PTI including H2O2 generation, while flagellin from the rice...
Viral infection of mammalian cells triggers the innate immune response through non-self recognition of pathogen associated molecular patterns (PAMPs) in viral nucleic acid. Accurate PAMP discrimination is essential to avoid self recognition that can generate autoimmunity, and therefore should be facilitated by the presence of multiple motifs in a PAMP that mark it as non-self. Hepatitis C virus...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید