نتایج جستجو برای: narumi katayama polynomial
تعداد نتایج: 97894 فیلتر نتایج به سال:
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.
the neighbourhood polynomial g , is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph. in other word $n(g,x)=sum_{uin n(g)} x^{|u|}$, where n(g) is neighbourhood complex of a graph, whose vertices are the vertices of the graph and faces are subsets of vertices that have a common neighbour. in this paper we compute this polynomial for some na...
let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. in this paper we obtain some new results about the dependence of $|p(rz)|$ on $|p(rz)| $ for $r^2leq rrleq k^2$, $k^2 leq rrleq r^2$ and for $rleq r leq k$. our results refine and generalize certain well-known polynomial inequalities.
let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.
In this paper, we show how certain metabelian groups can be found within polynomial evaluation groupoids. We show that every finite abelian group can beobtained as a polynomial evaluation groupoid.
چکیده ندارد.
let $r=k[x_1,x_2,cdots, x_n]$ be a polynomial ring over a field $k$. we prove that for any positive integers $m, n$, $text{reg}(i^mj^nk)leq mtext{reg}(i)+ntext{reg}(j)+text{reg}(k)$ if $i, j, ksubseteq r$ are three monomial complete intersections ($i$, $j$, $k$ are not necessarily proper ideals of the polynomial ring $r$), and $i, j$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید