The purpose of this article is to use rigid analysis to clarify the relation between classical modular forms and Katz’s overconvergent forms. In particular, we prove a conjecture of F. Gouvêa [G, Conj. 3] which asserts that every overconvergent p-adic modular form of sufficiently small slope is classical. More precisely, let p > 3 be a prime, K a complete subfield of Cp, N be a positive integer...