نتایج جستجو برای: mir155

تعداد نتایج: 277  

Journal: :British journal of haematology 2008
Charles H Lawrie Shira Gal Heather M Dunlop Beena Pushkaran Amanda P Liggins Karen Pulford Alison H Banham Francesco Pezzella Jacqueline Boultwood James S Wainscoat Christian S R Hatton Adrian L Harris

Circulating nucleic acids have been shown to have potential as non-invasive diagnostic markers in cancer. We therefore investigated whether microRNAs also have diagnostic utility by comparing levels of tumour-associated MIRN155 (miR-155), MIRN210 (miR-210) and MIRN21 (miR-21) in serum from diffuse large B-cell lymphoma (DLBCL) patients (n = 60) with healthy controls (n = 43). Levels were higher...

2008
Hansheng Wang Bo Li Chenlei Leng

Contemporary statistical research frequently deals with problems involving a diverging number of parameters. For those problems, various shrinkage methods (e.g., LASSO, SCAD, etc) are found particularly useful for the purpose of variable selection (Fan and Peng, 2004; Huang et al., 2007b). Nevertheless, the desirable performances of those shrinkage methods heavily hinge on an appropriate select...

2013
Izabella Slezak-Prochazka Joost Kluiver Debora de Jong Gertrud Kortman Nancy Halsema Sibrand Poppema Bart-Jan Kroesen Anke van den Berg

Processing of miRNAs occurs simultaneous with the transcription and splicing of their primary transcripts. For the small subset of exonic miRNAs it is unclear if the unspliced and/or spliced transcripts are used for miRNA biogenesis. We assessed endogenous levels and cellular location of primary transcripts of three exonic miRNAs. The ratio between unspliced and spliced transcripts varied marke...

2011
Joseph Ngatchou-Wandji

Two methods for clustering data and choosing a mixture model are proposed. First, we derive a new classification algorithm based on the classification likelihood. Then, the likelihood conditional on these clusters is written as the product of likelihoods of each cluster, and AICrespectively BIC-type approximations are applied. The resulting criteria turn out to be the sum of the AIC or BIC rela...

2012
Aurore Lomet Gérard Govaert Yves Grandvalet

Block clustering (or co-clustering or simultaneous clustering) aims at simultaneously partitioning the rows and columns of a data table to reveal homogeneous block structures. This structure can stem from the latent block model which provides a probabilistic modelling of data tables whose blocks arise from row and column clusters. For continuous data, each table entry is typically assumed to fo...

Journal: :Bioinformatics 2005
Yuan Ji Chunlei Wu Ping Liu Jing Wang Kevin R. Coombes

SUMMARY We propose a beta-mixture model approach to solve a variety of problems related to correlations of gene-expression levels. For example, in meta-analyses of microarray gene-expression datasets, a threshold value of correlation coefficients for gene-expression levels is used to decide whether gene-expression levels are strongly correlated across studies. Ad hoc threshold values such as 0....

2007
MARLENE MÜLLER

This paper concerns the asymptotic properties of a class of criteria for model selection in linear regression models, which covers the most well known criteria as e.g. MALLOWS' Cp, CV (cross-validation), GCV ( generalized cross-validation), AKAIKE's AIC and FPE as well as SCHWARZ' BIC. These criteria are shown to be consistent in the sense of selecting the true or larger models, assuming i.i.d....

2010
Kristin L Ayers Heather J Cordell

Penalized regression methods offer an attractive alternative to single marker testing in genetic association analysis. Penalized regression methods shrink down to zero the coefficient of markers that have little apparent effect on the trait of interest, resulting in a parsimonious subset of what we hope are true pertinent predictors. Here we explore the performance of penalization in selecting ...

Journal: :Science 2007
Antony Rodriguez Elena Vigorito Simon Clare Madhuri V Warren Philippe Couttet Dalya R Soond Stijn van Dongen Russell J Grocock Partha P Das Eric A Miska David Vetrie Klaus Okkenhaug Anton J Enright Gordon Dougan Martin Turner Allan Bradley

MicroRNAs are a class of small RNAs that are increasingly being recognized as important regulators of gene expression. Although hundreds of microRNAs are present in the mammalian genome, genetic studies addressing their physiological roles are at an early stage. We have shown that mice deficient for bic/microRNA-155 are immunodeficient and display increased lung airway remodeling. We demonstrat...

2007
Peide Shi Chih-Ling Tsai

SUMMARY Based on the marginal likelihood approach, we develop a model selection criterion, MIC, for regression models with the general variance structure. These include weighted regression models, regression models with ARMA errors, growth curve models, and spatial correlation models. We show that MIC is a consistent criterion. For regression models with either constant or non-constant variance...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->