نتایج جستجو برای: medical image analysis
تعداد نتایج: 3560203 فیلتر نتایج به سال:
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
Background and Aim: Image, as a kind of information vehicle which can convey a large volume of information, is important especially in medicine field. Existence of different attributes of image features and various search algorithms in medical image retrieval systems and lack of an authority to evaluate the quality of retrieval systems, make a systematic review in medical image retrieval system...
The analysis of medical images has been woven into the fabric of the Pattern Analysis and Machine Intelligence (PAMI) community since t h e earliest days of these Transactions. Initially, the efforts in this area were seen as applying pattern analysis and computer vision techniquss lo another interesting dataset. However. over the last two to three decades, the unique nature of the problems pre...
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
The elastic shape analysis of surfaces has proven useful in several application areas, including medical image analysis, vision, and graphics. This approach is based on defining new mathematical representations of parameterized surfaces, including the square root normal field (SRNF), and then using the L norm to compare their shapes. Past work is based on using the pullback of the L metric to t...
Clustering spatial data is a well-known problem that has been extensively studied to find hidden patterns or meaningful sub-groups and has many applications such as satellite imagery, geographic information systems, medical image analysis, etc. Although many methods have been proposed in the literature, very few have considered constraints such that physical obstacles and bridges linking cluste...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید