نتایج جستجو برای: ls svm

تعداد نتایج: 32490  

2013
Keyvan Kasiri Kamran Kazemi Mohammad Javad Dehghani Mohammad Sadegh Helfroush

In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the tool...

Journal: :Journal of spectroscopy 2022

Bruise may cause spoilage, reduce commodity economic value, and give rise to food quality safety concerns. Therefore, it is crucial detect whether a loquat bruised when save storage transportation costs. At present, the bruise of loquats mainly discriminated by operator’s naked eye, which affected personal habits, light intensity, subjective psychological factors. The detection method time-cons...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده عمران 1393

چکیده: نظارت بر سلامت سازه های عمرانی و تشخیص آسیب های آن در مراحل اولیه، یکی از موضوعات مورد توجه همیشگی بوده است. اهمیت پل ها به عنوان گره های ارتباطی در شریان های حمل و نقل بر کسی پوشیده نیست. جایگزینی یک پل در شبکه های شهری اغلب بسیار مشکل وگاه غیرعملی می باشد. از این رو بررسی خرابی در این سازه ها به منظور ایجاد یک چرخه تعمیر و نگهداری مقرون به صرفه نیاز به توجه محققین دارد. در این تحقیق، ...

2007
Jarkko Tikka Jaakko Hollmén

Time series prediction is an important problem in many areas of science and engineering. We investigate the use of a parsimonious set of autoregressive variables in the long-term prediction task using the direct prediction approach. We use a fast input selection algorithm on a large set of autoregressive variables for different direct predictors, and train nonlinear models (LS-SVM and a committ...

2013
Ersen Yilmaz Çaglar Kilikçier

We use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification accuracy. Additio...

Journal: :JCP 2011
Chunli Xie Cheng Shao Dandan Zhao

Parameters optimization plays an important role for the performance of least squares support vector machines (LS-SVM). In this paper, a novel parameters optimization method for LS-SVM is presented based on chaotic ant swarm (CAS) algorithm. Using this method, the optimization model is established, within which the fitness function is the mean square error (MSE) index, and the constraints are th...

1999
L. Lukas P. Van Dooren B. De Moor J. Vandewalle

Support vector machines (SVM's) have been introduced in literature as a method for pattern recognition and function estimation, within the framework of statistical learning theory and structural risk minimization. A least squares version (LS-SVM) has been recently reported which expresses the training in terms of solving a set of linear equations instead of quadratic programming as for the stan...

2008
Yoan Miché Antti Sorjamaa Amaury Lendasse

This paper presents the Optimally-Pruned Extreme Learning Machine (OP-ELM) toolbox. This novel, fast and accurate methodology is applied to several regression and classification problems. The results are compared with widely known Multilayer Perceptron (MLP) and Least-Squares Support Vector Machine (LS-SVM) methods. As the experiments (regression and classification) demonstrate, the OP-ELM meth...

2005
Iosif Mporas Nikos Fakotakis

Support Vector Machines (SVMs) have become a popular classification tool. Because of their theoretical robustness they offer improvements in pattern classification applications. This paper describes an approach of producing a N-best list of hypotheses for the needs of phoneme recognition, using a Least Squares Support Vector Machine classifier (LS-SVM) and generate the corresponding N-best list...

2009
Adas Gelzinis Antanas Verikas Marija Bacauskiene Evaldas Vaiciukynas Edgaras Kelertas Virgilijus Uloza Aurelija Vegiene

This paper is concerned with kernel-based techniques for automated categorization of laryngeal colour image sequences obtained by video laryngostroboscopy. Features used to characterize a laryngeal image are given by the kernel principal components computed using the N -vector of the 3-D colour histogram. The least squares support vector machine (LS-SVM) is designed for categorizing an image se...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید