نتایج جستجو برای: lignocellulose
تعداد نتایج: 1980 فیلتر نتایج به سال:
The properties and capacities of the ligninolytic enzymes of Daedaleopsis spp. are still unknown. This is the first study on the effect of plant residues and period of cultivation on the properties of Mn-oxidizing peroxidases and laccases of D. confragosa and D. tricolor, as well as their ligninolytic potentials. Wheat straw was the optimal carbon source for synthesis of highly active Mn-depend...
In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a crucial prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts and holding times. The consequences of the pretre...
Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these basidiomycetes do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications. Here we have applied a new technique for the complete solubilization of lignocellulose ...
Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many crea...
Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer...
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the...
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory c...
Simultaneous saccharification and fermentation (SSF) is the most commonly practiced operation in lignocellulose bioconversion to avoid the sugar product inhibition to cellulase enzymes. In this study, for the first time SSF was tested on microbial lipid fermentation using the diluted acid pretreated and biodetoxified corn stover. The results show that SSF was effective than the separate hydroly...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید