نتایج جستجو برای: lattice banach space
تعداد نتایج: 588801 فیلتر نتایج به سال:
for any x 1 ( . . . , x,, GX. A theorem of Aolci and Rolewicz (see [18]) asserts that if in (1.3) C = 2~\ then X is p-normable. We can then equivalently re-norm X so that in (1.4) JB = 1. If in addition X is a vector lattice and ||x||<||y|| whenever |x|<|y| we say that X is a quasi-Banach lattice. As in the case of Banach lattices [13] we may make the following definitions. We shall say that X ...
The paper deals with on-line regression settings with signals belonging to a Banach lattice. Our algorithms work in a semi-online setting where all the inputs are known in advance and outcomes are unknown and given step by step. We apply the Aggregating Algorithm to construct a prediction method whose cumulative loss over all the input vectors is comparable with the cumulative loss of any linea...
$top$-filters can be used to define $top$-convergence spaces in the lattice-valued context. Connections between $top$-convergence spaces and lattice-valued convergence spaces are given. Regularity of a $top$-convergence space has recently been defined and studied by Fang and Yue. An equivalent characterization is given in the present work in terms of convergence of closures of $top$-filters. M...
The classical Banach-Stone theorem characterizes linear surjective isometries between C(K)-spaces. The main aim of this paper is to present a survey of Banach-Stone-theoremtype results between some function spaces. The weighted substitution operators play an important role in characterization of isometries, disjointness preserving operators, and lattice homomorphisms. Some open problems are giv...
We show that if X is a separable Banach space (or more generally a Banach with an infinite-dimensional separable quotient) then there is a continuous mapping f : X → X such that the autonomous differential equation x′ = f(x) has no solution at any point. In order to put our results into context, let us start by formulating the classical theorem of Peano. Theorem 1. (Peano) Let X = R, f : R×X → ...
A central question in Banach space theory has been to identify the class of Banach spaces that contain almost isometric copies of the classical sequence spaces `p and c0. Banach space theory entered a new era in the mid 1970’s, when B. Tsirelson [34] constructed the first space not containing isomorphic copies any of the classical sequence spaces. Tsirelson’s space has been called “the first tr...
Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...
We prove that a Schauder frame for any separable Banach space is shrinking if and only if it has an associated space with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and boundedly complete if and only if it has a reflexive associated space. To obtain these results, we prove that the upper and lower estimate theorems for finite dimensional decompositi...
We generalise the Riesz representation theorems for positive linear functionals on $$\text {C}_{\text {c}}(X)$$ and {0}}(X)$$ , where X is a locally compact Hausdorff space, to operators from these spaces into partially ordered vector space E. The representing measures are defined Borel $$\sigma $$ -algebra of take their values in extended cone corresponding integrals order integrals. give expl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید