نتایج جستجو برای: large eigenvalue problems
تعداد نتایج: 1549518 فیلتر نتایج به سال:
We present a new computational approach for a class of large-scale nonlinear eigenvalue problems (NEPs) that are nonlinear in the eigenvalue. The contribution of this paper is two-fold. We derive a new iterative algorithm for NEPs, the tensor infinite Arnoldi method (TIAR), which is applicable to a general class of NEPs, and we show how to specialize the algorithm to a specific NEP: the wavegui...
The aim of the book is to provide an analysis of the boundary element method for the numerical solution of Laplacian eigenvalue problems. The representation of Laplacian eigenvalue problems in the form of boundary integral equations leads to nonlinear eigenvalue problems for related boundary integral operators. The solution of boundary element discretizations of such eigenvalue problems require...
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration in the complex plane to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user-defined search interval. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solvin...
Linear stability analysis of a dynamical system entails finding the rightmost eigenvalue for a series of eigenvalue problems. For large-scale systems, it is known that conventional iterative eigenvalue solvers are not reliable for computing this eigenvalue. A more robust method recently developed in Elman & Wu (2012) and Meerbergen & Spence (2010), Lyapunov inverse iteraiton, involves solving l...
Abstract. The largest eigenvalue of a matrix is always larger or equal than its largest diagonal entry. We show that for a large class of random Laplacian matrices, this bound is essentially tight: the largest eigenvalue is, up to lower order terms, often the size of the largest diagonal entry. Besides being a simple tool to obtain precise estimates on the largest eigenvalue of a large class of...
We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k + 1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k2n is relatively small, the problem can be solved numerically by computi...
Heinrich Voss Hamburg University of Technology 115.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-2 115.2 Analytic matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-3 115.3 Variational Characterization of Eigenvalues . . . . . . . . 115-7 115.4 General Rayleigh Functionals . . . . . . . . . . . . . . . . . . . ...
A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...
A collection of inverse eigenvalue problems are identi ed and classi ed according to their characteristics Current developments in both the theoretic and the algorithmic aspects are summarized and reviewed in this paper This exposition also reveals many open questions that deserves further study An extensive bibliography of pertinent literature is attached
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید