نتایج جستجو برای: k_4 free graph

تعداد نتایج: 699767  

2013
Maria Chudnovsky Alexandra Fradkin Matthieu Plumettaz

In 1968, Erdös and Lovász conjectured that for every graph G and all integers s, t ≥ 2 such that s + t − 1 = χ(G) > ω(G), there exists a partition (S, T ) of the vertex set of G such that χ(G|S) ≥ s and χ(G|T ) ≥ t. For general graphs, the only settled cases of the conjecture are when s and t are small. Recently, the conjecture was proved for a few special classes of graphs: graphs with stabili...

Journal: :Journal of Graph Theory 1996
Armen S. Asratian

A graph G is locally connected if the subgraph induced by the neighbourhood of each vertex is connected. We prove that a locally connected graph G of order p 3, containing no induced subgraph isomorphic to K 1;3 , is Hamilton-connected if and only if G is 3-connected.

Journal: :CoRR 2014
Xin Zhang

A graph G is list point k-arborable if, whenever we are given a k-list assignment L(v) of colors for each vertex v ∈ V(G), we can choose a color c(v) ∈ L(v) for each vertex v so that each color class induces an acyclic subgraph of G, and is equitable list point k-arborable if G is list point k-arborable and each color appears on at most ⌈|V(G)|/k⌉ vertices of G. In this paper, we conjecture tha...

2015
Paolo Nobili Antonio Sassano

In this paper we show how to solve the Maximum Weight Stable Set Problem in a claw-free graph G(V,E) with α(G) ≤ 3 in time O(|E| log |V |). More precisely, in time O(|E|) we check whether α(G) ≤ 3 or produce a stable set with cardinality at least 4; moreover, if α(G) ≤ 3 we produce in time O(|E| log |V |) a maximum stable set of G. This improves the bound of O(|E||V |) due to Faenza et alii ([2]).

Journal: :Inf. Process. Lett. 2003
Alain Hertz Vadim V. Lozin David Schindl

Finding augmenting chains is in the heart of the maximum matching problem, which is equivalent to the maximum stable set problem in the class of line graphs. Due to the celebrated result of Edmonds, augmenting chains can be found in line graphs in polynomial time. Minty and Sbihi generalized this result to claw-free graphs. In this paper we extend it to larger classes. As a particular consequen...

Journal: :Journal of Graph Theory 2012
Michael Ferrara Timothy Morris Paul S. Wenger

A graph G is said to be pancyclic if G contains cycles of all lengths from 3 to |V (G)|. We show that if G is 4-connected, claw-free, and P10-free, then G is either pancyclic or it is the line graph of the Petersen graph. This implies that every 4-connected, claw-free, P9-free graph is pancyclic, which is best possible and extends a result of Gould et al. Pancyclicity in 3-connected graphs: Pai...

2009
Maria Chudnovsky Paul Seymour

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent vertices, with chromatic number χ and clique number ω, then χ ≤ 2ω and the same for the complement of G. We also prove that the choice number of G is at most 2ω, except possibly in the case when G can be obtained from a subgraph of the Schläfli graph by replicating vertices. Finally, we show that th...

Journal: :Discrete Mathematics 2008
Michael A. Henning Liying Kang Erfang Shan Anders Yeo

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set ofG if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investi...

2003
Annegret K. Wagler Arnaud Pêcher

Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [7,11] and claw-free graphs [6,7]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [8]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, ...

Journal: :Graphs and Combinatorics 2014
Louis Esperet András Gyárfás Frédéric Maffray

Chudnovsky and Seymour proved that every connected claw-free graph that contains a stable set of size 3 has chromatic number at most twice its clique number. We improve this for small clique size, showing that every claw-free graph with clique number at most 3 is 4-choosable and every claw-free graph with clique number at most 4 is 7-choosable. These bounds are tight.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید