نتایج جستجو برای: k tuple total domatic number
تعداد نتایج: 2133728 فیلتر نتایج به سال:
In a graph G, a vertex is said to dominate itself and all vertices adjacent to it. For a positive integer k, the k-tuple domination number γ×k(G) of G is the minimum size of a subset D of V (G) such that every vertex in G is dominated by at least k vertices in D. To generalize/improve known upper bounds for the k-tuple domination number, this paper establishes that for any positive integer k an...
In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear...
The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...
iii Acknowledgments I want to thank my thesis advisor Jörg Rothe for all of his support during the past four years. In the first place, I am deeply grateful to him for giving me the chance to be part of his research team. Without his great efforts, I would never have had the chance to work in the scientific community. Many inspiring and valuable discussions with him initiated fruitful ideas tha...
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
A subset D of the vertex set V (G) of a graph G is called point-set dominating, if for each subset S ⊆ V (G) − D there exists a vertex v ∈ D such that the subgraph of G induced by S ∪ {v} is connected. The maximum number of classes of a partition of V (G), all of whose classes are point-set dominating sets, is the point-set domatic number dp(G) of G. Its basic properties are studied in the paper.
A subset D of V (G) is called an equitable dominating set of a graph G if for every v ∈ (V − D), there exists a vertex u ∈ D such that uv ∈ E(G) and |deg(u) − deg(v)| 6 1. The minimum cardinality of such a dominating set is denoted by γe(G) and is called equitable domination number of G. In this paper we introduce the equitable edge domination and equitable edge domatic number in a graph, exact...
For a nonempty graph G = (V, E), a signed edge-domination of G is a function f : E(G) → {1,−1} such that ∑e′∈NG [e] f (e′) ≥ 1 for each e ∈ E(G). The signed edge-domatic number of G is the largest integer d for which there is a set { f1, f2, . . . , fd} of signed edge-dominations of G such that ∑d i=1 fi (e) ≤ 1 for every e ∈ E(G). This paper gives an original study on this concept and determin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید