نتایج جستجو برای: k means clustering
تعداد نتایج: 786274 فیلتر نتایج به سال:
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...
The sets Sj are the sets of points to which μj is the closest center. In each step of the algorithm the potential function is reduced. Let’s examine that. First, if the set of centers μj are fixed, the best assignment is clearly the one which assigns each data point to its closest center. Also, assume that μ is the center of a set of points S. Then, if we move μ to 1 |S| ∑ i∈S xi then we only r...
In many applications it is desirable to cluster high dimensional data along various subspaces, which we refer to as projective clustering. We propose a new objective function for projective clustering, taking into account the inherent trade-off between the dimension of a subspace and the induced clustering error. We then present an extension of the -means clustering algorithm for projective clu...
The k-means clustering algorithm is one of the most widely used, effective, and best understood clustering methods. However, successful use of k-means requires a carefully chosen distance measure that reflects the properties of the clustering task. Since designing this distance measure by hand is often difficult, we provide methods for training k-means using supervised data. Given training data...
background: liver cirrhosis was one of the most important liver diseases. other chronic liver diseases could be lead to liver cirrhosis. liver cirrhosis could be lead one kind of liver cancers named hepatocellular carcinoma. cirrhosis in the early stages just by laboratory and imaging testes could be diagnosed. in this study cirrhotic patients were classified based on laboratory symptoms. for t...
Let us define some notation which will help us analyze the algorithm. L := A solution (k-subset) returned by Local Search. Copt := An optimal solution for the k-median problem. We will eventually show that Cost(L) ≤ 5 · Cost(Copt). For any p ∈ P,C ⊆ P, NN(p, C) := c̄ ∈ C that minimizes d(p, ·). So d(p,NN(p, C)) = d(p, C) by definition. Also, for any C ⊆ P, c̄ ∈ C, Cluster(C, c̄) := {q ∈ P | NN(q, ...
Many applications of clustering require the use of normalized data, such as text or mass spectra mining. The spherical K-means algorithm [6], an adaptation of the traditional K-means algorithm, is highly useful for data of this kind because it produces normalized cluster centers. The K-medians clustering algorithm is also an important clustering tool because of its wellknown resistance to outli...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید