نتایج جستجو برای: k means clustering

تعداد نتایج: 786274  

Journal: :Behavior research methods 2013
Marieke E Timmerman Eva Ceulemans Kim De Roover Karla Van Leeuwen

To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...

2012
Edo Liberty

The sets Sj are the sets of points to which μj is the closest center. In each step of the algorithm the potential function is reduced. Let’s examine that. First, if the set of centers μj are fixed, the best assignment is clearly the one which assigns each data point to its closest center. Also, assume that μ is the center of a set of points S. Then, if we move μ to 1 |S| ∑ i∈S xi then we only r...

2004
Pankaj K. Agarwal Nabil H. Mustafa

In many applications it is desirable to cluster high dimensional data along various subspaces, which we refer to as projective clustering. We propose a new objective function for projective clustering, taking into account the inherent trade-off between the dimension of a subspace and the induced clustering error. We then present an extension of the -means clustering algorithm for projective clu...

2008
Thomas Finley Thorsten Joachims

The k-means clustering algorithm is one of the most widely used, effective, and best understood clustering methods. However, successful use of k-means requires a carefully chosen distance measure that reflects the properties of the clustering task. Since designing this distance measure by hand is often difficult, we provide methods for training k-means using supervised data. Given training data...

Journal: :گوارش 0
mina pazouki mohammad mehdi sepehri mehdi saberifiroozi

background: liver cirrhosis was one of the most important liver diseases. other chronic liver diseases could be lead to liver cirrhosis. liver cirrhosis could be lead one kind of liver cancers named hepatocellular carcinoma. cirrhosis in the early stages just by laboratory and imaging testes could be diagnosed. in this study cirrhotic patients were classified based on laboratory symptoms. for t...

2016
Kasturi Varadarajan Tanmay Inamdar

Let us define some notation which will help us analyze the algorithm. L := A solution (k-subset) returned by Local Search. Copt := An optimal solution for the k-median problem. We will eventually show that Cost(L) ≤ 5 · Cost(Copt). For any p ∈ P,C ⊆ P, NN(p, C) := c̄ ∈ C that minimizes d(p, ·). So d(p,NN(p, C)) = d(p, C) by definition. Also, for any C ⊆ P, c̄ ∈ C, Cluster(C, c̄) := {q ∈ P | NN(q, ...

2006
Benjamin J. Anderson Deborah S. Gross David R. Musicant Anna M. Ritz Thomas G. Smith Leah E. Steinberg

Many applications of clustering require the use of normalized data, such as text or mass spectra mining. The spherical K-means algorithm [6], an adaptation of the traditional K-means algorithm, is highly useful for data of this kind because it produces normalized cluster centers. The K-medians clustering algorithm is also an important clustering tool because of its wellknown resistance to outli...

Journal: :International Journal of Advanced Computer Science and Applications 2014

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید