let $r=oplus_{nin bbb n_0}r_n$ be a noetherian homogeneous ring with local base ring $(r_0,frak{m}_0)$, $m$ and $n$ two finitely generated graded $r$-modules. let $t$ be the least integer such that $h^t_{r_+}(m,n)$ is not minimax. we prove that $h^j_{frak{m}_0r}(h^t_{r_+}(m,n))$ is artinian for $j=0,1$. also, we show that if ${rm cd}(r_{+},m,n)=2$ and $tin bbb n_0$, then $h^t_{frak{m}_0r}(h^2_{...