نتایج جستجو برای: hochschild cohomology

تعداد نتایج: 12316  

2008
MITJA MASTNAK SARAH WITHERSPOON

We give explicit formulas for maps in a long exact sequence connecting bialgebra cohomology to Hochschild cohomology. We give a sufficient condition for the connecting homomorphism to be surjective. We apply these results to compute all bialgebra two-cocycles of certain Radford biproducts (bosonizations). These two-cocycles are precisely those associated to the finite dimensional pointed Hopf a...

2008
A. LAZAREV

We uncover a somewhat surprising connection between spaces of multiplicative maps between A∞-ring spectra and topological Hochschild cohomology. As a consequence we show that such spaces become infinite loop spaces after looping only once. We also prove that any multiplicative cohomology operation in complex cobordisms theory MU canonically lifts to an A∞-map MU → MU . This implies, in particul...

2007

In this paper we show that a strongly homotopy commutative (or C∞-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-algebra (an ∞-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a C∞-algebra and does not generalize to a...

2015
A. R. GARZON

Résumé. We introduce the second cohomology categorical group of a categorical group G with coefficients in a symmetric G-categorical group and we show that it classifies extensions of G with symmetric kernel and a functorial section. Moreover, from an essentially surjective homomorphism of categorical groups we get 2-exact sequences à la Hochschild-Serre connecting the categorical groups of der...

Journal: :Japanese Journal of Mathematics 2021

We prove that, for a Poisson vertex algebra $${\cal V}$$ , the canonical injective homomorphism of variational cohomology to its classical is an isomorphism, provided that viewed as differential algebra, polynomials in finitely many variables. This theorem one key ingredients computation cohomology. For proof, we introduce sesquilinear Hochschild and Harrison complexes vanishing symmetric

2007
ANDREY LAZAREV A. LAZAREV

In this paper we show that a strongly homotopy commutative (or C∞-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-algebra (an ∞generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a C∞-algebra and does not generalize to al...

2008
THOMAS WILLWACHER

We give an explicit formula for sp2n-basic representatives of the cyclic cohomology of the Weyl algebra HC(A2n). This paper can be seen as cyclic addendum to the paper [6] by Feigin, Felder and Shoikhet, where the analogous Hochschild case was treated. As an application, we prove a generalization of a Theorem of Nest and Tsygan concerning the relation of the Todd class and the cyclic cohomology...

2010
ANNE V. SHEPLER SARAH WITHERSPOON

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

2008
M. Flach

We establish various properties of the definition of cohomology of topological groups given by Grothendieck, Artin and Verdier in SGA4, including a Hochschild-Serre spectral sequence and a continuity theorem for compact groups. We use these properties to compute the cohomology of the Weil group of a totally imaginary field, and of the Weil-étale topology of a number ring recently introduced by ...

2007
ALASTAIR HAMILTON ANDREY LAZAREV

This paper builds a general framework in which to study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras. This framework is based on noncommutative geometry as expounded by Connes and Kontsevich. The developed machinery is then used to establish a general form of Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras. This generalizes and puts in ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید