نتایج جستجو برای: hidden training

تعداد نتایج: 378572  

Journal: :Proceedings. International Conference on Intelligent Systems for Molecular Biology 1995
Sean R. Eddy

A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignm...

2009
Marta Kolasa Ryszard Wojtyna Rafał Długosz Wojciech Jóźwicki

This paper presents an application of an artificial neural network to determine survival time of patients with a bladder cancer. Different learning methods have been investigated to find a solution, which is most optimal from a computational complexity point of view. In our study, a model of a multilayer perceptron with a training algorithm based on an error back-propagation method with a momen...

1992
Noboru Murata Shuji Yoshizawa Shun-ichi Amari

The problem of model selection or determination of the number of hidden units is elucidated by the statistical approach, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation between the training error and the generalization error is studied in terms of the number of...

2014
Luca Pasa Alessandro Sperduti

We propose a pre-training technique for recurrent neural networks based on linear autoencoder networks for sequences, i.e. linear dynamical systems modelling the target sequences. We start by giving a closed form solution for the definition of the optimal weights of a linear autoencoder given a training set of sequences. This solution, however, is computationally very demanding, so we suggest a...

Journal: :CoRR 2016
Yotaro Kubo George Tucker Simon Wiesler

We introduce dropout compaction, a novel method for training feed-forward neural networks which realizes the performance gains of training a large model with dropout regularization, yet extracts a compact neural network for run-time efficiency. In the proposed method, we introduce a sparsity-inducing prior on the per unit dropout retention probability so that the optimizer can effectively prune...

2008
Yasser Hifny Yuqing Gao

We present the Trusted Expectation-Maximization (TEM), a new discriminative training scheme, for speech recognition applications. In particular, the TEM algorithm may be used for Hidden Markov Models (HMMs) based discriminative training. The TEM algorithm has a form similar to the ExpectationMaximization (EM) algorithm, which is an efficient iterative procedure to perform maximum likelihood in ...

1998
Brian Kan-Wing Mak Enrico Bocchieri

Training of continuous density hidden Markov models (CDHMMs) is usually time-consuming and tedious due to the large number of model parameters involved. Recently we proposed a new derivative of CDHMM, the subspace distribution clustering hidden Markov model (SDCHMM) which tie CDHMMs at the ner level of subspace distributions, resulting in many fewer model parameters. An SDCHMM training algorith...

2011
Zaihu PANG Shikui TU Dan SU Xihong WU Lei XU

This paper presents a new discriminative approach for training Gaussian mixture models (GMMs) of hidden Markov models (HMMs) based acoustic model in a large vocabulary continuous speech recognition (LVCSR) system. This approach is featured by embedding a rival penalized competitive learning (RPCL) mechanism on the level of hidden Markov states. For every input, the correct identity state, calle...

Journal: :CoRR 2016
Daniel Soudry Yair Carmon

We use smoothed analysis techniques to provide guarantees on the training loss of Multilayer Neural Networks (MNNs) at differentiable local minima. Specifically, we examine MNNs with piecewise linear activation functions, quadratic loss and a single output, under mild over-parametrization. We prove that for a MNN with one hidden layer, the training error is zero at every differentiable local mi...

2010
QIN Wei WEI Gang

As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is de...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید