نتایج جستجو برای: hausdorff measure lebesgue measure multiplicity
تعداد نتایج: 368780 فیلتر نتایج به سال:
We establish formulas for bounds on the Haudorff measure of the intersection of certain Cantor sets with their translates. As a consequence we obtain a formula for the Hausdorff dimensions of these intersections.
We construct quasiconformal mappings $f\colon \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ for which there is a Borel set $E \subset \mathbb{R}^2 \times \{0\}$ of positive Lebesgue $2$-measure whose image $f(E)$ has Hausdorff zero. This gives solution to the open problem inverse absolute continuity on hypersurfaces, attributed Gehring. By implication, our result also answers questions V\"ais\"al\...
in chapter one we will describe definitions and preliminary results to provide the global context of our own results to be presented in detail in the subsequent chapters in chapter two we consider degree-one maps of the circle and we study their rotation set. our main result in this chapter says that if the map is topologically mixing then its rotation interval is nontrivial (that is, not reduc...
In a recent paper, Pertti Mattila asked which gauge functions φ have the property that for any Borel set A ⊂ R2 with Hausdorff measure Hφ(A) > 0, the projection of A to almost every line has positive length. We show that finiteness of ∫ 1 0 φ(r) r2 dr, which is known to be sufficient for this property, is also necessary for regularly varying φ. Our proof is based on a random construction adapte...
We give a necessary and sufficient condition on a Randers space for the existence of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, such a measure coincides with the Busemann-Hausdorff measure up to a constant multiplication.
In this article we describe recent (within the past 4 or 5 years) results in minimal surface theory, with particular emphasis on the existence and regularity theory. For a more general survey, including some technical background discussion and a more comprehensive bibliography, the reader is referred to [30]. Throughout the article «?f will denote ÄJ-dimensional Hausdorff measure (in Euclidean ...
In the present paper we sketch the proof of the fact that for any open connected set Ω ⊂ Rn+1, n ≥ 1, and any E ⊂ ∂Ω with 0 < H(E) < ∞, absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable.
If X is a subset of R , let Hk(X) denote the k-dimensional hausdorff measure of X . We write Ik(X) = 0 if H(πKX) = 0 for almost every k-plane K in R , where πK : R → K is orthogonal projection. Otherwise we write Ik(X) > 0. This paper gives a proof of the following theorem. 1.1. Structure Theorem. Let X be a set in R with Hk(X) < ∞ and Ik(X) > 0. Then there is a k-dimensional C submanifold M wi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید