نتایج جستجو برای: fuzzy bernstein polynomials

تعداد نتایج: 131425  

1999
Jieqing Feng Qunsheng Peng

Composition of the Bernstein polynomials is an important research topic in computer-aided geometric design. This function is useful in implementing evaluation, subdivision, free-form deformation, trimming, conversion between tensor product and Bézier simplex forms, degree raising etc. To accomplish the composition, some numerically stable algorithms were introduced, such as blossoming algorithm...

Journal: :Journal of Approximation Theory 2008
Isaac Pesenson

Bernstein-Nikolskii inequalities and Riesz interpolation formula are established for eigenfunctions of Laplace operators and polynomials on compact homogeneous manifolds.

2013
Jürgen Garloff Andrew P. Smith

which are now called Bernstein polynomials, in order to present a short proof of the Weierstrass Approximation Theorem. The subsequent history is well documented, see, e.g., [29] for the period up to 1955, the monograph [18] published in 1953, and the survey article [9] which appeared on the occasion of the hundredth anniversary of the above paper by Bernstein. Since the latter publication prov...

2012
Paul Barry

Using the language of Riordan arrays, we define a notion of generalized Bernstein polynomials which are defined as elements of certain Riordan arrays. We characterize the general elements of these arrays, and examine the Hankel transform of the row sums and the first columns of these arrays. We propose conditions under which these Hankel transforms possess the Somos-4 property. We use the gener...

2010
SOFIYA OSTROVSKA S. OSTROVSKA

Abstract. Since for q > 1, the q-Bernstein polynomials Bn,q are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f ∈ C[0, 1] and ...

2014
Alexandre Maréchal Michaël Périn

We present three linearization methods to over-approximate non-linear multivariate polynomials with convex polyhedra. The first one is based on the substitution of some variables by intervals. The principle of the second linearization technique is to express polynomials in the Bernstein basis and deduce a polyhedron from the Bernstein coefficients. The last method is based on Handelman’s theore...

2011
Michael S. Floater

i=0 aix , ai ∈ R. We will denote by πn the linear (vector) space of all such polynomials. The actual degree of p is the largest i for which ai is non-zero. The functions 1, x, . . . , x form a basis for πn, known as the monomial basis, and the dimension of the space πn is therefore n + 1. Bernstein polynomials are an alternative basis for πn, and are used to construct Bezier curves. The i-th Be...

Journal: :Reliable Computing 2012
Jürgen Garloff Andrew P. Smith

which are now called Bernstein polynomials, in order to present a short proof of the Weierstrass Approximation Theorem. The subsequent history is well documented, see, e.g., [29] for the period up to 1955, the monograph [18] published in 1953, and the survey article [9] which appeared on the occasion of the hundredth anniversary of the above paper by Bernstein. Since the latter publication prov...

Journal: :Reliable Computing 2000
Jürgen Garloff

We survey some recent applications of Bernstein expansion to robust stability, viz. checking robust Hurwitz and Schur stability of polynomials with polynomial parameter dependency by testing determinantal criteria and by inspection of the value set. Then we show how Bernstein expansion can be used to solve systems of strict polynomial inequalities.

Journal: :CoRR 2017
Christoffer Sloth

This paper presents a nonnegative polynomial that cannot be represented with nonnegative coefficients in the simplicial Bernstein basis by subdividing the standard simplex. The example shows that Bernstein Theorem cannot be extended to certificates of nonnegativity for polynomials with zeros at isolated points.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید