نتایج جستجو برای: fractional differential equation
تعداد نتایج: 529728 فیلتر نتایج به سال:
and Applied Analysis 3 Subject to the initial condition D α−k 0 U (x, 0) = f k (x) , (k = 0, . . . , n − 1) , D α−n 0 U (x, 0) = 0, n = [α] , D k 0 U (x, 0) = g k (x) , (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (11) where ∂α/∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a known function, N is the general nonlinear fractional differential operator, a...
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
Fractional differential equations have gained considerable importance due to their applications in various fields, such as physics, mechanics, chemistry, engineering, etc. It has been found that the differential equations involving fractional derivatives are more realistic and practical to describe many phenomena in nature[1–3]. We also refer the reader to some other works [4–7] on the fraction...
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
In this paper, we investigate a new type of random $F$-contraction and obtain a common random fixed point theorem for a pair of self stochastic mappings in a separable Banach space. The existence of a unique solution for nonlinear fractional random differential equation is proved under suitable conditions.
in this article, we survey the asymptotic stability analysis of fractional differential systems with the prabhakar fractional derivatives. we present the stability regions for these types of fractional differential systems. a brief comparison with the stability aspects of fractional differential systems in the sense of riemann-liouville fractional derivatives is also given.
The major goal of this manuscript is to investigate the existence, uniqueness, and stability a q-fractional Langevin differential equation with integral conditions. We demonstrate existence uniqueness solution proposed using Banach contraction principle Schaefer’s fixed-point theorem. also elaborate on different kinds Ulam stability. theoretical outcomes are verified by examples.
in this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)d^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the banach algebras. this proof is given in two cases of the continuous and discontinuous function $g$, under the generalized lipschitz and caratheodory conditions.
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: { D t x(t) = f(t, x(t), D β t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = ∫ 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle. Keywords—Fractional differential equation; Integral boundary condi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید