نتایج جستجو برای: forecasting model
تعداد نتایج: 2128277 فیلتر نتایج به سال:
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
The combination forecasting model IOWGA-EMD-ARMA-WNN is proposed in this paper. The randomness, periodicity and tendency of the original data are showed by EMD decomposition in EMD-ARMA model. WNN combines the advantages of wavelet analysis and BP neural network and improves the learning efficiency and forecasting accuracy. The weight of combination model is decided by forecasting precision of ...
Under the situation that single prediction can’t meet the accuracy requirements, combined forecasting method is usually the first choice. Using the history data of domestic oil products consumption, by optimized combination of grey forecasting GM(1, 1) model and artificial neural network, the combined forecasting model was built. It can be getting from the combined forecasting model that on the...
Abstract: Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting mod...
Electricity demand forecasting can provide the scientific basis for the country to formulate the power industry development strategy and the power-generating target, which further promotes the sustainable, healthy and rapid development of the national economy. In this paper, a new mathematical hybrid method is proposed to forecast electricity demand. In line with electricity demand feature, the...
Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the se...
Fuzzy time series model has been developed to either improve forecasting accuracy or reduce computation time, whereas a residul analysis in order to improve its forecasting performance is still lack of consideration. In this paper, we propose a novel Fourier method to revise the analysis of residual terms, and then we illustrate it to forecast the Japanese tourists visiting in Taiwan per year. ...
A drawback of traditional forecasting methods is that they can not deal with forecasting problems in which the historical data are represented by linguistic values. Using fuzzy time series to deal with forecasting problems can overcome this drawback. In this paper, we propose a new fuzzy time series model called the two-factors time-variant fuzzy time series model to deal with forecasting probl...
With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data pro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید