نتایج جستجو برای: distance domination
تعداد نتایج: 245131 فیلتر نتایج به سال:
A set D of vertices in a graph G is a distance-k dominating set if every vertex of G either is in D or is within distance k of at least one vertex in D. A distance-k dominating set of G of minimum cardinality is called a minimum distance-k dominating set of G. For any graph G and for a subset F of the edge set of G the set F is an edge dominating set of G if every edge of G either is in D or is...
Let γ(G) and ι(G) be the domination and independent domination numbers of a graph G, respectively. Introduced by Sumner and Moorer [23], a graph G is domination perfect if γ(H) = ι(H) for every induced subgraph H ⊆ G. In 1991, Zverovich and Zverovich [26] proposed a characterization of domination perfect graphs in terms of forbidden induced subgraphs. Fulman [15] noticed that this characterizat...
In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of Pm¤Pn was studied. The split domination number of P2¤Pn is calculated, and we give good estimates for the split domination number of Pm¤Pn expressed in terms of its domination number.
We provide a simple constructive characterization for trees with equal domination and independent domination numbers, and for trees with equal domination and total domination numbers. We also consider a general framework for constructive characterizations for other equality problems.
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G− v is less than the total domination number of G. We call these graphs total domination critical or just γt-critical. If such a graph G has total domination number k, we call it k-γt-critical. We study an open problem of ...
The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt(G) of a graph G and we show that for any connected graph G of order at least two, msdγt(G) ≤ 3. We show that...
In this paper, we propose a new network reliability measure for some particular kind of service networks, which we refer to as domination reliability. We relate this new reliability measure to the domination polynomial of a graph and the coverage probability of a hypergraph. We derive explicit and recursive formulæ for domination reliability and its associated domination reliability polynomial,...
If u and v are vertices of a graph, then d(u, v) denotes the distance from u to v. Let S = {v1, v2, . . . , vk} be a set of vertices in a connected graph G. For each v ∈ V (G), the k-vector cS(v) is defined by cS(v) = (d(v, v1), d(v, v2), · · · , d(v, vk)). A dominating set S = {v1, v2, . . . , vk} in a connected graph G is a metric-locatingdominating set, or an MLD-set, if the k-vectors cS(v) ...
For a graph G = (V,E), a set D ⊆ V is called a disjunctive dominating set of G if for every vertex v ∈ V \D, v is either adjacent to a vertex of D or has at least two vertices in D at distance 2 from it. The cardinality of a minimum disjunctive dominating set of G is called the disjunctive domination number of graph G, and is denoted by γ 2 (G). The MINIMUM DISJUNCTIVE DOMINATION PROBLEM (MDDP)...
for a graph $g$ let $gamma (g)$ be its domination number. we define a graph g to be (i) a hypo-efficient domination graph (or a hypo-$mathcal{ed}$ graph) if $g$ has no efficient dominating set (eds) but every graph formed by removing a single vertex from $g$ has at least one eds, and (ii) a hypo-unique domination graph (a hypo-$mathcal{ud}$ graph) if $g$ has at least two minimum dominating sets...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید