We construct 2Ω(n 5/4) combinatorial types of triangulated 3-spheres on n vertices. Since by a result of Goodman and Pollack (1986) there are no more than 2O(n logn) combinatorial types of simplicial 4-polytopes, this proves that asymptotically, there are far more combinatorial types of triangulated 3-spheres than of simplicial 4-polytopes on n vertices. This complements results of Kalai (1988)...