نتایج جستجو برای: amine functionalized mesoporous silica nanoparticles
تعداد نتایج: 179546 فیلتر نتایج به سال:
Mesoporous silica nanoparticles (MSN) have potential as drug delivery and controlled release devices due to their high surface area and absorption capabilities. The effect of surface charge and pH on the release of the fluorescent dye, rhodamine 6G, from MSN has been studied. Release profiles of rhodamine 6G from bare and amine-coated MSN at pH 5.0 and 7.4 are very different and demonstrate tha...
Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient c...
in the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. fourier transform infrared (ftir) and x-ray fluorescence (xrf) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. field emission scanning electron microscopy (fesem) and transmission electron microscopy (tem) investigation...
Commercially available silica gel is chemically modified for carbon dioxide capture. Calcinated silica gel of certain particle size functionalized with amine using two different methods, wet impregnation and grafting via silane chemistry has been employed as a porous media. The prepared material is characterized by Fourier transform infrared, scanning electron microscopy, energy dispersive anal...
Colloidal mesoporous silica nanoparticles asymmetrically capped with non-porous phenylsilsesquioxane have been prepared by adding phenyltriethoxysilane to an aqueous dispersion of mesostructured silica-surfactant composite nanoparticles. The integration of colloidal stability, mesoporosity and the Janus structure is quite promising for materials design applicable in various fields, including ca...
A facile self-assembly method is described to prepare PEGylated silica nanocarriers using hydrophobic mesoporous silica nanoparticles and a pluronic F127 polymer. Pluronic capped nanocarriers revealed excellent dispersibility in biological media with cyto- and blood compatibilities.
Cucurbit[6]uril-based reversible bistable [2]pseudorotaxanes were designed, synthesized and installed on the surface of mesoporous silica nanoparticles as supramolecular nanovalves. The assembled mechanized silica nanoparticles realize the multistage pH-controlled release of benzotriazole and the potential for reutilization.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید