نتایج جستجو برای: مدل میانگینگیری knn

تعداد نتایج: 124493  

2017
Sarana Nutanong Mohammed Eunus Ali Egemen Tanin Kyriakos Mouratidis

Given a query point q and a set D of data points, a nearest neighbor (NN) query returns the data point p in D that minimizes the distance DIST(q,p), where the distance function DIST(,) is the L2 norm. One important variant of this query type is kNN query, which returns k data points with the minimum distances. When taking the temporal dimension into account, the kNN query result may change over...

2009
Renqiang Min

K Nearest Neighbor (kNN) is one of the most popular machine learning techniques, but it often fails to work well with inappropriate choice of distance metric or due to the presence of a lot of irrelated features. Linear and non-linear feature transformation methods have been applied to extract classrelevant information to improve kNN classification. In this paper, I describe kNN classification ...

2016
Pasi Fränti Radu Mariescu-Istodor Caiming Zhong

K-nearest neighbor graph (KNN) is a widely used tool in several pattern recognition applications but it has drawbacks. Firstly, the choice of k can have significant impact on the result because it has to be fixed beforehand, and it does not adapt to the local density of the neighborhood. Secondly, KNN does not guarantee connectivity of the graph. We introduce an alternative data structure calle...

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

در سال‌های اخیر، تکنیک‌های مدل‌سازی داده‌ مبنا کاربردهای فراوانی در مطالعات هیدرولوژی و مهندسی منابع آب یافته‌اند. توسعه مدل‌های برآورد یا پیش‌بینی رواناب رودخانه، یکی از زمینه‌های مطالعاتی است که این تکنیک‌ها در آن کاربرد زیادی دارند. در مطالعه حاضر، چهار تکنیک مدل‌سازی داده ‌مبنا، شامل رگرسیون خطی چندگانه، K نزدیک‌ترین همسایه، شبکه‌های عصبی مصنوعی و سیستم‌های استنتاج عصبی - فازی تطبیقی به‌منظ...

ژورنال: اقیانوس شناسی 2013
الهیار, محمدرضا, بختیاری, آرش, توکلی, محمود, کمیجانی, فرشته,

به‌دلیل کمبود اطلاعات اندازه‌گیری در بسیاری از مناطق ساحلی و دریایی، خصوصیات موج با استفاده از روش-های مختلف تخمین زده می‌شود. پروژه‌های دریایی پیش‌بینی/پیش‌یابی اقلیم موج غالباً توسط مدل‎های عددی یا روش‌های تجربی انجام می‌شود. تاکنون نیز روش‌های تجربی مختلفی برای پیش‌یابی امواج گسترش یافته‌اند که توسط مهندسین و محققین مورد استفاده قرار می‌گیرند. با گسترش پردازندههایی با سرعت بیشتر، مدل‌های عد...

2008
Marcin Gorawski

This chapter describes realization of distributed approach to continuous queries with kNN join processing in the spatial telemetric data warehouse. Due to dispersion of the developed system, new structural members were distinguished: the mobile object simulator, the kNN join processing service, and the query manager. Distributed tasks communicate using JAVA RMI methods. The kNN queries (k Neare...

2014
Maria Terzi Matthew Rowe Maria Angela Ferrario Jon Whittle

This article reports on a modification of the user-kNN algorithm that measures the similarity between users based on the similarity of text reviews, instead of ratings. We investigate the performance of text semantic similarity measures and we evaluate our text-based user-kNN approach by comparing it to a range of ratings-based approaches in a ratings prediction task. We do so by using datasets...

Journal: :International journal of bioinformatics research and applications 2010
Manik Dhawan Sudarshan Selvaraja Zhong-Hui Duan

In this study, we develop a two-class classification system based on a committee of k-Nearest Neighbour (kNN) classifiers. The system includes a sequence of simple data preprocessing steps. Each committee consists of 5 kNN classifiers of different architectures. Each classifier on the committee takes in a different set of features. The classification system is then applied to a set of microarra...

2012
M. Kozak K. Stapor

The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed ke...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید