نتایج جستجو برای: مدل سه متغیره garch
تعداد نتایج: 247040 فیلتر نتایج به سال:
We present a general framework for a GARCH (1,1) type of process with innovations using a probability law of the mean-variance mixing type. We call the process the mean variance mixing GARCH (1,1) or MVM GARCH (1,1). One implication of this particular specification is a GARCH process with skewed innovations and constant mean dynamics. This is achieved without using a location parameter to compe...
a r t i c l e i n f o JEL classification: C53 G17 Keywords: GARCH Higher conditional moments Approximate predictive distributions Value-at-Risk S&P 500 Treasury bill rate Euro–US dollar exchange rate It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency...
مدل های مارکوف پنهان، مدل هایی هستند که در آن ها توزیعی که مشاهدات را تولید می کند به حالاتی از یک فرآیند مارکوف غیر قابل مشاهده بستگی دارد. به همین دلیل، آن ها را مدل های مارکوف پنهان نامیده اند. اغلب، در سری های زمانی مالی با پدیده بی ثباتی واریانس روبرو هستیم. بیشتر محققان، از مدل های اتورگرسیو ناهمگن شرطی تعمیم یافته(garch)، به منظور پیش بینی تغییرپذیری برای زمان های آتی استفاده می کنند. ...
It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from this fact we extend the Dynamic Conditional Correlation (DCC) model by allowing for a clustering structure of the univariate GARCH parameters. The model can be estimated in two steps, the first devoted to the clustering structure, and the second focusing on correlation parameters. Differently from the trad...
Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatil...
One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and mode...
در این مقاله با در نظر گرفتن بازار رقابت کامل، ابتدا به بیان فرمول قیمت گذاری اختیار مبادله استاندارد آمریکایی و اروپایی و اختیار مبادله توانی آمریکایی و اروپایی می پردازیم. سپس با هدف انتخاب توان مناسب افزایش دارایی های مورد مبادله به منظور محاسبه ارزش اختیار مبادله توانی دلار بر مبنای دارایی پایه طلا در آینده ای نزدیک، 501 داده از قیمت طلا و دلار در بازهی زمانی اول فروردین 1391 تا اول ت...
در این مقاله با بهکارگیری نسل جدید مدلهای نوسانپذیری چندمتغیره شامل مدل ADCC، مدل GO-GARCH و مدلهای GARCH مبتنیبر کاپیولا، به تخمین و بررسی عملکرد پوشش ریسک بازار نقد با بازار آتی سکه بهار آزادی، طی دوره زمانی 5/8/1389 تا 31/4/1395، پرداختهایم. نتایج تجربی حاکی از برتری نسبتهای پوشش ریسک بهدست آمده از مدل GO-GARCH در مقایسه با سایر مدلهای رقیب، برای پوشش ریسک نوسانات قیمتهای نقد با آت...
A Skewed Student-t Realised DCC copula model using Realised Volatility GARCH marginal functions is developed within a Bayesian framework for the purpose of forecasting portfolio Value at Risk and Conditional Value at Risk. The use of copulas is implemented so that the marginal distributions can be separated from the dependence structure to produce tail forecasts. This is compared to using tradi...
GARCH-type models have been highly developed since Engle [1982] presented ARCH process 30 years ago. Different kinds of GARCH-type models are applicable to different kinds of research purposes. As documented by many literatures that short-memory processes with level shifts will exhibit properties that make standard tools conclude long-memory is present. Therefore, in this paper, we want to fore...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید