نتایج جستجو برای: حسگری فشرده compressed sensing

تعداد نتایج: 148250  

چکیده: ماتریس­های نمونه­برداری نقش اساسی در حسگری فشرده دارند. این مـاتریس­ها به­صـورت تصـادفی و یقینی قابل ساخت هستند. ماتریس­های یقینی به علت اینکه حافظه کم­تری برای ذخیره­سازی نیاز دارند موردتوجه زیادی قرار گرفته­اند. در این مقاله دسته­ای از ماتریس­های حسگری یقینی، با استفاده از توابع هش ساخته می­شوند. برای این منظور ابتدا یک ماتریس کد اولیه ساخته می­شود، سپس با استفاده از ماتریس توابع هش، ی...

Journal: :CoRR 2012
Jin-Taek Seong Heung-No Lee

We consider compressed sampling over finite fields and investigate the number of compressed measurements needed for successful L0 recovery. Our results are obtained while the sparseness of the sensing matrices as well as the size of the finite fields are varied. One of interesting conclusions includes that unless the signal is “ultra” sparse, the sensing matrices do not have to be dense. Keywor...

Journal: :IEICE Transactions 2013
Kazunori Hayashi Masaaki Nagahara Toshiyuki Tanaka

This survey provides a brief introduction to compressed sensing as well as several major algorithms to solve it and its various applications to communications systems. We firstly review linear simultaneous equations as ill-posed inverse problems, since the idea of compressed sensing could be best understood in the context of the linear equations. Then, we consider the problem of compressed sens...

2013
Jacek Misiurewicz Janusz Kulpa

The paper presents a study of Compressed Sensing application in a passive radar, where the range resolution is limited by the bandwidth of signal used. The application of Compressed Sensing allows to obtain superresolution in a presence of a point target, which is useful e.g. when exploiting multipath information for estimating the target elevation. However, in such setup, Compressed Sensing al...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2013
Jeffrey D Blanchard

Over the past decade, compressed sensing has delivered significant advances in the theory and application of measuring and compressing data. Consider capturing a 10 mega pixel image with a digital camera. Emailing an image of this size requires an unnecessary amount of storage space and bandwidth. Instead, users employ a standard digital compression scheme, such as JPEG, to represent the image ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده مهندسی برق و کامپیوتر 1393

سنجش فشرده که نمونه¬برداری فشرده نیز خوانده می‏شود، روشی نوین برای نمونه برداری و اکتساب داده از سیگنال است. ‏این تئوری بر‏این اصل استوار است که اکثر سیگنال¬ها یا تُنک هستند یا می‏¬توانند در پایه¬ای خاص نمایشی تنک داشته باشند. سنجش فشرده بخشی از حوزه پژوهشی پردازش تنک است و با نمونه برداری و بازسازی سیگنال های تنک سر وکار دارد. ‏این تئوری نوظهور در حوزه‏های مختلف ریاضیات کاربردی، پردازش سیگنال و...

Journal: :CoRR 2013
Gautam Dasarathy Parikshit Shah Badri Narayan Bhaskar Robert D. Nowak

This paper considers the problem of recovering an unknown sparse p× p matrix X from an m ×m matrix Y = AXBT , where A and B are known m × p matrices with m p. The main result shows that there exist constructions of the “sketching” matrices A and B so that even if X has O(p) non-zeros, it can be recovered exactly and efficiently using a convex program as long as these non-zeros are not concentra...

2015
Tim Roughgarden Gregory Valiant

Recall the setup in compressive sensing. There is an unknown signal z ∈ R, and we can only glean information about z through linear measurements. We choose m linear measurements a1, . . . , am ∈ R. “Nature” then chooses a signal z, and we receive the results b1 = 〈a1, z〉, . . . , bm = 〈am, z〉 of our measurements, when applied to z. The goal is then to recover z from b. Last lecture culminated i...

Journal: :IEEE Trans. Signal Processing 2011
M. Amin Khajehnejad Weiyu Xu Amir Salman Avestimehr Babak Hassibi

In this paper we introduce a nonuniform sparsity model and analyze the performance of an optimized weighted `1 minimization over that sparsity model. In particular, we focus on a model where the entries of the unknown vector fall into two sets, with entries of each set having a specific probability of being nonzero. We propose a weighted `1 minimization recovery algorithm and analyze its perfor...

2012
Weiyu Xu Babak Hassibi

In this chapter, we introduce a unjfied rugh-dimensional geometric framework for analyzing the phase transition phenomenon of (1 minimization in compressive sensing. This framework connects srudying the phase transitions of ( 1 minimization with computing the Grassmann angles in high-dimensional convex geometry. We demonstrate the broad applications of this Grassmann angle framework by giving s...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید