نتایج جستجو برای: weakly chebyshev subspace

تعداد نتایج: 64870  

Journal: :J. Symb. Comput. 2010
Pierre-Vincent Koseleff Daniel Pecker Fabrice Rouillier

A Chebyshev knot C(a, b, c, φ) is a knot which has a parametrization of the form x(t) = Ta(t); y(t) = Tb(t); z(t) = Tc(t + φ), where a, b, c are integers, Tn(t) is the Chebyshev polynomial of degree n and φ ∈ R. We show that any two-bridge knot is a Chebyshev knot with a = 3 and also with a = 4. For every a, b, c integers (a = 3, 4 and a, b coprime), we describe an algorithm that gives all Cheb...

2008
William B. Johnson Gideon Schechtman

A classification of weakly compact multiplication operators on L(Lp), 1 < p < ∞, is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of `p-strictly singular operators, and we also investigate the structure of general `p-strictly singular operators on Lp . The main result is that if an operator T on Lp , 1 < p < 2, is `p-strictly singula...

2008
William B. Johnson Gideon Schechtman

A classification of weakly compact multiplication operators on L(Lp), 1 < p < ∞, is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of lp-strictly singular operators, and we also investigate the structure of general lp-strictly singular operators on Lp. The main result is that if an operator T on Lp, 1 < p < 2, is lp-strictly singular ...

2008
Urs Hartl

We develop the analogue in equal positive characteristic of Fontaine’s theory for crystalline Galois representations of a p-adic field. In particular we describe the analogue of Fontaine’s mysterious functor which assigns to a crystalline Galois representation a Hodge filtration. In equal characteristic the role of the Hodge filtrations is played by Hodge-Pink structures. The later were invente...

1999
SEN-ZHONG HUANG

We establish the following result. Theorem. Let α : G → L(X) be a σ(X, X∗) integrable bounded group representation whose Arveson spectrum Sp(α) is scattered. Then the subspace generated by all eigenvectors of the dual representation α∗ is w∗ dense in X∗. Moreover, the σ(X, X∗) closed subalgebra Wα generated by the operators αt (t ∈ G) is semisimple. If, in addition, X does not contain any copy ...

2008
Ognyan Kounchev

We provide a definition of Multidimensional Chebyshev Systems of order N which is satisfied by the solutions of a wide class of elliptic equations of order 2N . This definition generalizes a very large class of Extended Complete Chebyshev systems in the one-dimensional case. This is the first of a series of papers in this area, which solves the longstanding problem of finding a satisfactory mul...

2010
Ali Ghaffari

Let X be a hypergroup. In this paper, we define a locally convex topology β on L(X) such that (L(X), β) with the strong topology can be identified with a Banach subspace of L(X). We prove that if X has a Haar measure, then the dual to this subspace is LC(X) ∗∗ = cl{F ∈ L(X);F has compact carrier}. Moreover, we study the operators on L(X) and L 0 (X) which commute with translations and convoluti...

2017
P. BILSKI

We show that if X is a locally compact, paracompact and Hausdorff space, then X can be realised as the subspace of all maximal points of the inverse limit of an inverse system of partial orders with an appropriate topology (equivalently T0-Alexandroff spaces). Then, the space X is homeomorphic to a deformation retract of that limit. Moreover, we extend results obtained by Clader and Thibault an...

Journal: :SIAM J. Matrix Analysis Applications 2010
Vance Faber Jörg Liesen Petr Tichý

The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...

Journal: :iranian journal of science and technology (sciences) 2013
h. kheiri

a computational method for numerical solution of a nonlinear volterra and fredholm integro-differentialequations of fractional order based on chebyshev cardinal functions is introduced. the chebyshev cardinaloperational matrix of fractional derivative is derived and used to transform the main equation to a system ofalgebraic equations. some examples are included to demonstrate the validity and ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید