نتایج جستجو برای: valued lipschitz algebras
تعداد نتایج: 89768 فیلتر نتایج به سال:
We introduce and study the framework of compact metric structures and their associated notions of isomorphisms such as homeomorphic and bi-Lipschitz isomorphism. This is subsequently applied to model various classification problems in analysis such as isomorphism of C∗-algebras and affine homeomorphism of Choquet simplices, where among other things we provide a simple proof of the completeness ...
We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...
An algebra A over the real field R is a vector space over R which is closed with respect to a product xy which is linear in both x and y, and which satisfies the condition X(xy) = ÇKx)y = x(ky) for any X in R and x, y in A. The product is not necessarily associative. An element e of the algebra A is called a unit element if ex=xe = x for any x in A. Given any subset B of A, dim B will denote th...
This work studies the typical behavior of random integer-valued Lipschitz functions on expander graphs with sufficiently good expansion. We consider two families of functions: M -Lipschitz functions (functions which change by at most M along edges) and integer-homomorphisms (functions which change by exactly 1 along edges). We prove that such functions typically exhibit very small fluctuations....
Relying on the notion of set-valued Lie bracket introduced in an earlier paper, we extend some classical results valid for smooth vector fields to the case when the vector fields are just Lipschitz. In particular, we prove that the flows of two Lipschitz vector fields commute for small times if and only if their Lie bracket vanishes everywhere (i.e., equivalently, if their classical Lie bracket...
We develop a domain-theoretic computational model for multi-variable differential calculus, which for the first time gives rise to data types for piecewise differentiable or more generally Lipschitz functions, by constructing an effectively given continuous Scott domain for real-valued Lipschitz functions on finite dimensional Euclidean spaces. The model for real-valued Lipschitz functions of n...
Rough set theory is an important tool for dealing with granularity and vagueness in information systems. This paper studies a kind of rough set algebra. The collection of all the rough sets of an approximation space can be made into a 3-valued Lukasiewicz algebra. We call the algebra a rough 3-valued Lukasiewicz algebra. In this paper, we focus on the rough 3-valued Lukasiewicz algebras, which ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید