نتایج جستجو برای: trivariate garch model
تعداد نتایج: 2106669 فیلتر نتایج به سال:
We collect some continuous time GARCH models and report on how they approximate discrete time GARCH processes. Similarly, certain continuous time volatility models are viewed as approximations to discrete time volatility models. 1 Stochastic volatility models and discrete GARCH Both stochastic volatility models and GARCH processes are popular models for the description of financial time series....
In Duan, Gauthier and Simonato (1999), an analytical approximate formula for European options in the GARCH framework was developed. The formula is however restricted to the nonlinear asymmetric GARCH model. This paper extends the same approach to two other important GARCH specifications GJR-GARCH and EGARCH. We provide the corresponding formulas and study their numerical performance. keywords: ...
This paper examines the behaviour of European option price (Duan (1995)) and the Black-Scholes model bias when stock returns follow a GARCH (1,1) process. The GARCH option price is not preferenceneutral and depends on the unit risk premium (λ) as well as the two GARCH (1,1) process parameters (α1 , β1). In general, the GARCH option price does not seem overly sensitive to these parameters. Deep-...
We propose a simple and efficient way to calculate trivariate normal probabilities. The algorithm is based on a formula for the partial derivative of the trivariate probability with respect to a correlation coefficient.
The predictability of network traffic is a significant interest in many domains such as congestion control, admission control, and network management. An accurate traffic prediction model should have the ability to capture prominent traffic characteristics, such as long-range dependence (LRD) and self-similarity in the large time scale, multifractal in small time scale. In this paper we propose...
The predictability of network traffic is a significant interest in many domains such as congestion control, admission control, and network management. An accurate traffic prediction model should have the ability to capture prominent traffic characteristics, such as long-range dependence (LRD) and self-similarity in the large time scale, multifractal in small time scale. In this paper we propose...
Although the GARCH model has been quite successful in capturing important empirical aspects of financial data, particularly for the symmetric effects of volatility, it has had far less success in capturing the effects of extreme observations, outliers and skewness in returns. This paper examines the GARCH model under various non-normal error distributions in order to evaluate skewness and lepto...
We study in depth the properties of the GARCH(1,1) model and the assumptions on the parameter space under which the process is stationary. In particular, we prove ergodicity and strong stationarity for the conditional variance (squared volatility) of the process. We show under which conditions higher order moments of the GARCH(1,1) process exist and conclude that GARCH processes are heavy-taile...
In this paper we examine the usefulness of multivariate semi-parametric GARCH models for portfolio selection under a Value-at-Risk (VaR) constraint. First, we specify and estimate several alternative multivariate GARCH models for daily returns on the S&P 500 and Nasdaq indexes. Examining the within sample VaRs of a set of given portfolios shows that the semi-parametric model performs uniformly ...
Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study esti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید