نتایج جستجو برای: total graph of a commutative ring
تعداد نتایج: 23314752 فیلتر نتایج به سال:
let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors. the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero zero-divisors of $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...
It is shown that a commutative reduced ring R is a Baer ring if and only if it is a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an extremally disconnected space; if and only if every non-zero ideal of R is essential in a principal ideal generated by an idempotent.
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
Let R be a commutative ring with identity and )) ( ( R T Γ its total graph. The subject of this article is the investigation of the properties of the corresponding line graph ))). ( ( ( R T L Γ In particular, we determine the girth and clique number of ))). ( ( ( R T L Γ In addition to that, we find the condition for ))) ( ( ( R T L Γ to be Eulerian.
a ring $r$ is a strongly clean ring if every element in $r$ is the sum of an idempotent and a unit that commutate. we construct some classes of strongly clean rings which have stable range one. it is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
Let R be a commutative ring with non-zero identity. For an arbitrary multiplicatively closed subset S of R, we associate a simple graph denoted by ΓS(R) with all elements of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ S. Two well-known graphs of this type are the total graph and the unit graph. In this paper, we study some basic properties of ΓS(R). Mor...
Let R be a ring with unity. The graph Γ(R) is a graph with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. Let Γ2(R) is the subgraph of Γ(R) induced by the non-unit elements. H.R. Maimani et al. [H.R. Maimani et al., Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808] proved that: “If R is a commutative ring with unity a...
in this paper, we study some ring theoretic properties of the amalgamated duplication ring $rbowtie i$ of a commutative noetherian ring $r$ along an ideal $i$ of $r$ which was introduced by d'anna and fontana. indeed, it is determined that when $rbowtie i$ satisfies serre's conditions $(r_n)$ and $(s_n)$, and when is a normal ring, a generalized cohen-macaulay ring and finally a filter ring.
let $r$ be a commutative ring. in this paper we assert some properties of finitely generated comultiplication modules and fitting ideals of them.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید