نتایج جستجو برای: symmetric digraphs
تعداد نتایج: 85672 فیلتر نتایج به سال:
An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at r. A similar theorem of Menger guarantees λ strongly arc disjoint rv-paths for every vertex v, where “strongly” means no two paths contain a pair of symmetric arcs. We prove that if a directed graph D contains two arc-disjoin...
It has been proved that sphericity testing for digraphs is an NP-complete problem. Here, we investigate sphericity of 3-connected single source digraphs. We provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. Our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $O(n)$ time.
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
We consider 2-colored digraphs of the primitive ministrong digraphs having given exponents. In this paper we give bounds for 2-exponents of primitive extremal ministrong digraphs.
We construct a family of Cayley digraphs of degree d, diameter k and order kbd/2ck for any d ≥ 4 and k ≥ 3. We also present a collection of bipartite Cayley digraphs of order at least (k − 1)bd/2ck−1 for any degree d ≥ 4 and diameter k ≥ 4. For sufficiently large d and k, our digraphs are the largest known Cayley digraphs of degree d and diameter k, where k 6= d − 1 or d, and our bipartite digr...
Aharoni, R. and I. Ben-Arroyo Hartman, On Greene-Kleitman’s theorem for general digraphs, Discrete Mathematics 120 (1993) 13-24. Linial conjectured that Greene-Kleitman’s theorem can be extended to general digraphs. We prove a stronger conjecture of Berge for digraphs having k-optimal path partitions consisting of ‘long’ paths. The same method yields known results for acyclic digraphs, and exte...
A prominent problem in Graph Theory is to find extremal graphs or digraphs with restrictions in their diameter, degree and number of vertices. Here we obtain a new family of digraphs with minimal diameter, that is, given the number of vertices and degree there is no other digraph with a smaller diameter. This new family is called modified cyclic digraphsMCK(d, ) and it is derived from the Kautz...
Iterated line digraphs arise naturally in designing fault tolerant systems. Diameter vulnerability measures the increase in diameter of a digraph when some of its vertices or arcs fail. Thus, the study of diameter vulnerability is a suitable approach to the fault tolerance of a network. In this article we present some upper bounds for diameter vulnerability of iterated line digraphs LkG. Our bo...
The nonexistence of digraphs with order equal to the Moore bound Md;k = 1+d+: : :+d k for d; k > 1 has lead to the study of the problem of the existence ofàlmost' Moore digraphs, namely digraphs with order close to the Moore bound. In 1], it was shown that almost Moore digraphs of order Md;k ? 1, degree d, diameter k (d; k 3) contain either no cycle of length k or exactly one such cycle. In thi...
We give a decomposition formula for the characteristic polynomials of ramified uniform covers of digraphs. Similarly, we obtain a decomposition formula for the characteristic polynomials of ramified regular covers of digraphs. As applications, we establish decomposition formulas for the characteristic polynomials of branched covers of digraphs and the zeta functions of ramified covers of digraphs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید