Let $$S=\left\langle s_1,\ldots ,s_n\right\rangle $$ be a numerical semigroup generated by the relatively prime positive integers $$s_1,\ldots ,s_n$$ . $$k\geqslant 2$$ an integer. In this paper, we consider following k-power variant of Frobenius number S defined as $$\begin{aligned} {}^{k\!}r\!\left( S\right) := \text { largest } k {-power integer not belonging to S. \end{aligned}$$ investigat...