نتایج جستجو برای: quaternion matrices and linear algebra
تعداد نتایج: 16911737 فیلتر نتایج به سال:
The random matrix ensembles are applied to the quantum statistical systems. The quantum systems are studied using the finite dimensional real, complex and quaternion Hilbert spaces of the eigenfunctions. The linear operators describing the systems act on these Hilbert spaces and they are treated as random matrices in generic bases of the eigenfunctions. The random eigenproblems are presented an...
The random matrix ensembles are applied to the quantum statistical two-dimensional systems of electrons. The quantum systems are studied using the finite dimensional real, complex and quaternion Hilbert spaces of the eigenfunctions. The linear operators describing the systems act on these Hilbert spaces and they are treated as random matrices in generic bases of the eigenfunctions. The random e...
1 Abstract The random matrix ensembles are applied to the quantum statistical two-dimensional systems of electrons. The quantum systems are studied using the finite dimensional real, complex and quaternion Hilbert spaces of the eigenfunctions. The linear operators describing the systems act on these Hilbert spaces and they are treated as random matrices in generic bases of the eigenfunctions. T...
The random matrix ensembles are applied to the quantum chaotic systems. The quantum systems are studied using the finite dimensional real, complex and quaternion Hilbert spaces of the eigenfunctions. The linear operators describing the systems act on these Hilbert spaces and they are treated as random matrices in generic bases of the eigenfunctions. The random eigenproblems are presented and so...
It was recently shown that a family of exponentially stable linear systems whose matrices generate a solvable Lie algebra possesses a quadratic common Lyapunov function, which implies that the corresponding switched linear system is exponentially stable for arbitrary switching. In this paper we prove that the same properties hold under the weaker condition that the Lie algebra generated by give...
It was recently shown that a family of exponentially stable linear systems whose matrices generate a solvable Lie algebra possesses a quadratic common Lyapunov function, which implies that the corresponding switched linear system is exponentially stable for arbitrary switching. In this paper we prove that the same properties hold under the weaker condition that the Lie algebra generated by give...
This document will review the fundamental ideas of linear algebra. We will learn about matrices, matrix operations, linear transformations and discuss both the theoretical and computational aspects of linear algebra. The tools of linear algebra open the gateway to the study of more advanced mathematics. A lot of knowledge buzz awaits you if you choose to follow the path of understanding, instea...
For a rank-1 matrix A = a ⊗ b over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T (A) = U ⊗ A ⊗ V , or T (A) = U ⊗ A ⊗ V with ...
We investigate different notions of linear independence and of matrix rank that are relevant for max-plus or tropical semirings. The factor rank and tropical rank have already received attention, we compare them with the ranks defined in terms of signed tropical determinants or arising from a notion of linear independence introduced by Gondran and Minoux. To do this, we revisit the symmetrizati...
SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید