نتایج جستجو برای: profinite completions

تعداد نتایج: 2113  

Journal: :ACM Transactions on Computational Logic 2021

Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e., classes finite algebras closed under products, subalgebras and quotients. In this article, is generalized to Eilenberg-Moore a monad T on category D: we prove class -algebras pseudovariety iff it presentable by profinit...

2000
Mat́ıas Menni

Toposes and quasi-toposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the different ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding “good” quotients of equivalence relations to a simple catego...

Journal: :CoRR 2017
Revekka Kyriakoglou Dominique Perrin

We present a survey of results on profinite semigroups and their link with symbolic dynamics. We develop a series of results, mostly due to Almeida and Costa and we also include some original results on the Schützenberger groups associated to a uniformly recurrent set.

2004
YOUNG-TAK OH

For every profinite group G, we construct two covariant functors ∆G and APG from the category of commutative rings with identity to itself, and show that indeed they are equivalent to the functor WG introduced in [A. Dress and C. Siebeneicher, The Burnside ring of profinite groups and the Witt vectors construction, Adv. Math. 70 (1988), 87-132]. We call ∆G the generalized Burnside-Grothendieck ...

2006
V. Metaftsis

In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...

2008
Guram Bezhanishvili Patrick J. Morandi

We introduce and investigate topo-canonical completions of closure algebras and Heyting algebras. We develop a duality theory that is an alternative to Esakia’s duality, describe duals of topo-canonical completions in terms of the Salbany and Banaschewski compactifications, and characterize topo-canonical varieties of closure algebras and Heyting algebras. Consequently, we show that ideal compl...

2003
Hendrik Lenstra

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

2006
V. Metaftsis

In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...

2004
EDWARD FRENKEL

The Langlands Program has emerged in the late 60’s in the form of a series of far-reaching conjectures tying together seemingly unrelated objects in number theory, algebraic geometry, and the theory of automorphic forms [L1]. To motivate it, consider the old question from number theory: what is the structure of the Galois group Gal(Q/Q) of the field Q of rational numbers, i.e., the group of aut...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید