نتایج جستجو برای: polyethylene glycol peg 4000 coated fe3o4 magnetic nanoparticles
تعداد نتایج: 532026 فیلتر نتایج به سال:
A gold nanoparticle (AuNP)-based colorimetric method was developed for the molecular weight (MW) determination of polyethylene glycol (PEG), a commonly used hydrophilic polymer. Addition of a salt solution to PEG-coated AuNP solutions helps in screening the electrostatic repulsion between nanoparticles and generating a color change of the solutions from wine red to blue in 10 min in accordance ...
Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work...
Ferrofluids are nanomaterials consisting of magnetic nanoparticles that are dispersed in a carrier fluid. Their physical properties, and hence their field of application are determined by intertwined compositional, structural, and magnetic characteristics, including interparticle magnetic interactions. Magnetic nanoparticles were prepared by thermal decomposition of iron(III) chloride hexahydra...
Synopsis We have recently developed a new blood pool contrast agent (Fe3O4@SiO2/PEG) which possesses higher transverse relaxivity and long intravascular half-life. This study was aimed to assess the ability of Fe3O4@SiO2/PEG to improve high-resolution magnetic resonance angiography in visualizing cerebral microvasculature. Introduction A novel MR angiographic methodology, 3DΔR2-mMRA (three dime...
Nano-sized γ-Al2O3 was synthesized successfully by a simple method using Al2(SO4)3·18H2O as aluminium source and in the presence of polyethylene glycol (PEG 2000). FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of synthesized powder. The results showed that PEG playe...
Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and l...
Iron nanoparticles, either formed in situ stabilized by 1,6-bis(diphenylphosphino)hexane or polyethylene glycol (PEG), or preformed stabilized by PEG, are excellent catalysts for the cross-coupling of aryl Grignard reagents with primary and secondary alkyl halides bearing beta-hydrogens and they also prove effective in a tandem cyclization/cross-coupling reaction.
Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP®) were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrat...
Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید