نتایج جستجو برای: operator dual parseval frames
تعداد نتایج: 303019 فیلتر نتایج به سال:
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
in this paper, we give a necessary condition for function in l^2with its dual to generate a dual shearlet tight frame with respect to admissibility.
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
in this paper, we first discuss about canonical dual of g-frameλp = {λip ∈ b(h, hi) : i ∈ i}, where λ = {λi ∈ b(h, hi) :i ∈ i} is a g-frame for a hilbert space h and p is the orthogonalprojection from h onto a closed subspace m. next, we provethat, if λ = {λi ∈ b(h, hi) : i ∈ i} and θ = {θi ∈ b(k, hi) :i ∈ i} be respective g-frames for non zero hilbert spaces hand k, and λ and θ are unitarily e...
in this paper, g-dual function-valued frames in l2(0;1) are in-troduced. we can achieve more reconstruction formulas to ob-tain signals in l2(0;1) by applying g-dual function-valued framesin l2(0;1).
In This paper, we give a necessary condition for function in $L^2$ with its dual to generate a dual shearlet tight frame with respect to admissibility.
In this dissertation, we study the structure of correlation minimizing frames. A correlation minimizing (N,d)-frame is any uniform Parseval frame of N vectors in dimension, d, such that the largest absolute value of the inner products of any pair of vectors is as small as possible. We call this value the correlation constant. These frames are important as they are optimal for the 2-erasures pro...
The shearlet representation has gained increasing recognition in recent years as a framework for the efficient representation of multidimensional data. This representation consists of a countable collection of functions defined at various locations, scales and orientations, where the orientations are obtained through the use of shearing matrices. While shearing matrices offer the advantage of p...
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
Unit norm tight frames provide Parseval-like decompositions of vectors in terms of possibly nonorthogonal collections of unit norm vectors. One way to prove the existence of unit norm tight frames is to characterize them as the minimizers of a particular energy functional, dubbed the frame potential. We consider this minimization problem from a numerical perspective. In particular, we discuss h...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید