If A, B are bounded linear operators on a complex Hilbert space, then we prove that $$\begin{aligned} w(A)\le & {} \frac{1}{2}\left( \Vert A\Vert +\sqrt{r\left( |A||A^*|\right) }\right) ,\\ w(AB \pm BA)\le 2\sqrt{2}\Vert B\Vert \sqrt{ w^2(A)-\frac{c^2(\mathfrak {R}(A))+c^2(\mathfrak {I}(A))}{2} }, \end{aligned}$$ where $$w(\cdot ),\left\| \cdot \right\| $$ , and $$r(\cdot )$$ the numerical radi...