نتایج جستجو برای: nonparametric quintile regression
تعداد نتایج: 333001 فیلتر نتایج به سال:
Almost all of the current nonparametric regression methods such as smoothing splines, generalized additive models and varying coefficients models assume a linear relationship when nonparametric functions are regarded as parameters. In this article, we propose a general class of nonlinear nonparametric models that allow nonparametric functions to act nonlinearly. They arise in many fields as eit...
Modal regression estimates the local modes of the distribution of Y given X = x, instead of the mean, as in the usual regression sense, and can hence reveal important structure missed by usual regression methods. We study a simple nonparametric method for modal regression, based on a kernel density estimate (KDE) of the joint distribution of Y and X. We derive asymptotic error bounds for this m...
One must sometimes follow the evolution of several individuals that cannot be distinguished. The author proposes a graphical estimator of individual evolution that can be used in such cases. She shows that this estimator is consistent and asymptotically normal.
A common problem in statistics, and other disciplines , is to approximate adequately a function of several variables. In this paper we review some possible nonparametric Bayesian models with which we can perform this multiple regression problem. We shall also demonstrate how these basic models can be extended to allow the analysis of time series , both conventional and nancial, survival analysi...
We propose an approach to multivariate nonparametric regression that generalizes reduced rank regression for linear models. An additive model is estimated for each dimension of a q-dimensional response, with a shared p-dimensional predictor variable. To control the complexity of the model, we employ a functional form of the Ky-Fan or nuclear norm, resulting in a set of function estimates that h...
In this paper we describe two approaches to nonparametric regression. First, we consider the nearest neighbour approach, as a procedure which serves mainly for obtaining an ad hoc smoothing and interpolating. Next, we describe the roughness penalty approach. This gives a certain compromise between the demand for goodness-of-fit of regression curve to the given data and the condition that the re...
As in many areas of biostatistics, oncological problems often have multivariate predictors. While assuming a linear additive model is convenient and straightforward, it is often not satisfactory when the relation between the outcome measure and the predictors is either nonlinear or nonadditive. In addition, when the number of predictors becomes (much) larger than the number of independent obser...
We present algorithms for nonparametric regression in settings where the data are obtained sequentially. While traditional estimators select bandwidths that depend upon the sample size, for sequential data the effective sample size is dynamically changing. We propose a linear time algorithm that adjusts the bandwidth for each new data point, and show that the estimator achieves the optimal mini...
We deal with nonparametric estimation in a nonlinear cointegration model whose regressor and dependent variable can be contemporaneously correlated. The asymptotic properties of the Nadaraya-Watson estimator are already examined in the literature. In this paper, we consider nonparametric least absolute deviation (LAD) regression and derive the asymptotic distributions of the local constant and ...
This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید