نتایج جستجو برای: non simultaneous blow up
تعداد نتایج: 2219095 فیلتر نتایج به سال:
We consider the 1D nonlinear Schrodinger equation (NLS) with focusing point nonlinearity, \begin{document}$ \begin{equation} i\partial_t\psi + \partial_x^2\psi \delta|\psi|^{p-1}\psi = 0, \;\;\;\;\;\;(0.1)\end{equation} $\end{document} where {\delta} {\delta}(x) is delta function supported at origin. In L^2 supercritical setting p>3 , we construct self-similar blow-up solutions belonging to ene...
The ‘Folk Theorem’ that a smooth action by a compact Lie group can be (canonically) resolved, by iterated blow up, to have unique isotropy type is proved in the context of manifolds with corners. This procedure is shown to capture the simultaneous resolution of all isotropy types in a ‘resolution tower’ which projects to a resolution, with iterated boundary fibration, of the quotient. Equivaria...
The present paper is concerned with the Cauchy problem { ∂tu = ∆u + u in R × (0,∞), u(x, 0) = u0(x) ≥ 0 in R , with p,m > 1. A solution u with bounded initial data is said to blow up at a finite time T if lim supt↗T ‖u(t)‖L∞(RN ) = ∞. For N ≥ 3 we obtain, in a certain range of values of p, weak solutions which blow up at several times and become bounded in intervals between these blow-up times....
We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illus...
In this thesis, we continue the work of Goldreich and Ron in (ECCC 2008) by presenting an in nite family of natural properties of dense graphs having non-adaptive testers of query complexity of Õ(1/2) , where 2 is the proximity parameter. Speci cally, for every xed graph H , we show a non-adaptive tester of query complexity Õ(2−1) for the property of being a blow-up H . This considerably extend...
In this paper, I consider nonlinear parabolic problems under nonlinear boundary conditions. I establish respectively the conditions on nonlinearities to guarantee that ( , ) u x t exists globally or blows up at some finite time. If blow-up occurs, an upper bound for the blow-up time is derived, under somewhat more restrictive conditions, lower bounds for the blow-up time are also derived.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید