نتایج جستجو برای: noetherian space
تعداد نتایج: 495974 فیلتر نتایج به سال:
In the study of hereditary Noetherian rings, it is clear that hereditary Noetherian prime rings will play a central role (see, for example, [12]). Here we study the (two-sided) ideals of an hereditary Xoetherian prime ring and, as a consequence, ascertain the structure of factor rings and torsion modules. The torsion theory represents a generalization of similar results about Dedekind prime rin...
The present work investigates the learnability of classes of substructures of some algebraic structure: submonoids and subgroups of some given group, ideals of some given commutative ring, subbelds of a vector space. The learner sees all positive data but no negative one and converges to a program enumerating or computing the set to be learned. Besides semantical (BC) and syntactical (Ex) conve...
A number of examples and constructions of local Noetherian domains without finite normalization have been exhibited over the last seventy-five years. We discuss some of these examples, as well as the theory behind them.
A number of results are proved concerning the Quillen ^-theory K+(S*G) of the skew group ring S*G, where S is a Noetherian ring and G is a finite group of automorphisms of 5. Applications are given to the computation of AT-groups of group algebras and of equivariant /^-theory for affine varieties.
In this paper we will study dynamical systems over Noetherian rings. We will follow the behavioural approach. We first study two particular cases: autonomous systems and controllable systems. In the first case we will be able to connect autonomous systems with finitely generated systems. Moreover we will propose several different concepts of controllability and analyze how they are connected ea...
for each and i ≥ 0. The polynomial ring of integer-valued in rational is defined by Int ( an important example binomial and is non-Noetherian ring. In this paper the algebraic structure rings has been studied their properties ideals. notion ideal generated a given set defined. Which allows us to define new class Noetherian using ideals, which we named it binomiall...
The space of Cohen–Macaulay curves is a compactification of the space of curves that are embedded in a given projective space Pn. The idea is similar to that of the Hilbert scheme but instead of adding degenerated curves, one considers only curves without embedded or isolated points. However, the curves need not be embedded into the projective space. Instead, they come with a finite morphism to...
Well-founded orders are the opposite of noetherian orders: every nonempty subset contains at least one minimal element. And a set is well-ordered when it is totally ordered by a wellfounded order: every nonempty set contains exactly one minimal element. Sofar, noetherian induction has been the most powerful way of proving properties inductively; it is indeed the most general one in the precise ...
Let R be a commutative k−algebra over a field k. Assume R is a Noetherian integral domain and |R| = ∞. The group of k−automorphisms of R,i.e., Autk(R) acts in a natural way on (R − k). We study the structure of R when orbit space (R−k)/Autk(R) is finite, and note that most of the results proved in [1, §2] hold in this case as well. We also give an elementary proof of [1,Theorem 1.1] in case k i...
In this paper we classify Ext-finite noetherian hereditary abelian categories over an algebraically closed field k satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary abelian categories. As a side result we show that when our hereditary abelian categories have no nonzero projectives or injectives, then the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید