نتایج جستجو برای: newellwhitehead segel equation

تعداد نتایج: 230181  

Journal: :SIAM J. Math. Analysis 2015
José A. Carrillo Daniele Castorina Bruno Volzone

Replacing linear diffusion by a degenerate diffusion of porous medium type is known to regularize the classical two-dimensional parabolic-elliptic Keller-Segel model [10]. The implications of nonlinear diffusion are that solutions exist globally and are uniformly bounded in time. We analyse the stationary case showing the existence of a unique, up to translation, global minimizer of the associa...

2007
ADRIEN BLANCHET JOSÉ A. CARRILLO PHILIPPE LAURENÇOT

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...

2015
Tong Li Min Tang Xu Yang

This is a continuous study on E. coli chemotaxis under the framework of pathway-based meanfield theory (PBMFT) proposed in [G. Si, M. Tang and X. Yang, Multiscale Model. Simul., 12 (2014), 907–926], following the physical studies in [G. Si, T. Wu, Q. Quyang and Y. Tu, Phys. Rev. Lett., 109 (2012), 048101]. In this paper, we derive an augmented Keller-Segel system with macroscopic intercellular ...

2006
Takayoshi Ogawa

We classify the global behavior of the weak solution of the Keller-Segel system of degenerated type. For the stronger degeneracy the weak solution exists globally in time and it shows the time uniform decay under some extra conditions. If the degeneracy is weaker the solution exhibit a finite time blow-up if the data is non-negative. The situation is very similar to the semi-linear case. Some a...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2002
Bao-Feng Feng Boris A Malomed Takuji Kawahara

We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing a...

Journal: :SIAM Journal of Applied Mathematics 2014
Theodore Kolokolnikov Juncheng Wei Adam Alcolado

Recently, Wang and Hillen [Chaos 17 (3) (2007) 037108–037108] introduced a modified Keller-Segel model with logistic growth that exhibits complex spatiotemporal dynamics of spikes. These dynamics are driven by merging of spikes on one hand, and spike insertion on the other. In this paper we analyse the basic mechanisms that initiate and sustain these events. We identify two distinguished regime...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2008
Clément Sire Pierre-Henri Chavanis

We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [P. H. Chavanis and C. Sire, Phys. Rev. E 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to poly...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بناب - دانشکده علوم پایه 1393

در این پایان نامه یک روش عددی برای حل معادلات کسری-زمانی و کسری-فضایی برگر ‎egin{equation*}‎ ‎d_t^{alpha}u+varepsilon uu_{x}= u u_{xx}+eta d_x^{eta}u‎, ‎end{equation*}‎ معادله ی کسری-زمانی و کسری-فضایی پوآسن ‎egin{equation*}‎ ‎d_x^{eta}u‎ + ‎d_t^{alpha}u = f(x,t)‎, ‎end{equation*}‎ و معادله ی کسری-زمانی انتشار ‎egin{equation*}‎ ‎d_t^alpha u+u=k abla^2 u‎ + ‎f(x,t)‎, ‎end{equation*}‎ ...

Journal: :Discrete and Continuous Dynamical Systems-series B 2023

We consider the following Keller-Segel system with gradient dependent chemotactic coefficient: \begin{document}$ \begin{equation*} \begin{cases} u_{t} = \Delta u- \chi \nabla\cdot (uf(|\nabla v|)\nabla v),\\ 0 v -v+g(u), \end{cases} \end{equation*} $\end{document} in smooth bounded domains $ \Omega \subset \mathbb{R}^{n}, \,n\geq 1 f(\xi) \big(\xi^{p-2}\big(1+\xi^{p}\big)^{\frac{q-p}{p}}\big), ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید