نتایج جستجو برای: mv32 qca gate
تعداد نتایج: 43796 فیلتر نتایج به سال:
In order to design large digital circuits using Quantum-Dot Cellular Automata(QCA) cells, CAD tools and automated design methodology for QCA circuits are essential. This paper presents a QCA circuits design methodology based on traditional CMOS circuits design flow. This QCA circuits design methodology utilizes the current CMOS circuits design tools such as HSPICE and Synopsys Design Compiler. ...
recently testing of quantum-dot cellular automata (qca) circuits has attracted a lot of attention. in this paper, qca is investigated for testable implementations of reversible logic. to amplify testability in reversible qca circuits, a test method regarding to built in self test technique is developed for detecting all simulated defects. a new reversible qca mux 2×1 design is proposed for the ...
This research describes a three dimensional quantum cellular automaton (QCA) which can simulate all other 3D QCA. This intrinsically universal QCA belongs to the simplest subclass of QCA: Partitioned QCA (PQCA). PQCA are QCA of a particular form, where incoming information is scattered by a fixed unitary U before being redistributed and rescattered. Our construction is minimal amongst PQCA, hav...
<span lang="EN-US">The high-performance digital circuits can be constructed at high operating frequency, reduced power dissipation, portability, and large density. Using conventional complementary-metal-oxide-semiconductor (CMOS) design process, it is quite difficult to achieve ultra-high-speed due scaling problems. Recently quantum dot cellular automata (QCA) are prosed develop logic ato...
Quantum dot cellular Automata (QCA) is leading technology for alternative of CMOS design. Reversible Logic design is found to be Low power design which becomes emerging technology in Low power Nanotechnology era. In this work we devoted to design a Reversible Logic Gate which is a universal gate (known as URLG) and can be design with alternative of co-planer cross over wire. We introduce a pass...
Quantum-dot cellular automata (QCA) is a novel, current-free approach to computing at the nanoscale, which, if realized in computing devices, will have broad-reaching effects in the electronics industry. First, the concept of QCA is outlined. Next, personal research topics are proposed, to include the development of theoretical quantum-dynamic models of switching QCA cells; the development of a...
Quantum-dot Cellular Automata (QCA) is a promising, emerging nanotechnology based on single electron effects in quantum dots and molecules. While many logic implementations based on QCA devices have been proposed in literature [6, 7, 8], the inherent cellular structure of QCA cells make it a natural candidate for Cellular Automata (CA) implementation. CA offers regularity and modularity to the ...
Quantum-dot cellular automata (QCA) is a newly-developed nanotechnology for next-generation nanoelectronic circuits. QCA circuits use the propagation of charge polarity in QCA cells to pass information without any current being involved. It has the advantages of extremely small size, low power consumption, high device density and twinkling operation process. Nanofabrication of QCA circuits may ...
We describe an n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the universal QCA. Several steps of the universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید