نتایج جستجو برای: multi objective cat swarm optimization

تعداد نتایج: 1282705  

2017
Shen-Tsu Wang Meng-Hua Li Min Sheng

Method: A global search Particle Swarm Optimization (PSO) model is then established based on cluster analysis and grey theory. The three main operational mechanisms are: (1) an external repository to retain the optimal non-dominated solution set; (2) combined cluster analysis and grey theory to ensure a better distribution of the non-dominated solution search process; and (3) a virtual circle c...

C. Lucas, F. Tootoonchian, Z. Nasiri-Gheidari,

In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

2011
Andre B. de Carvalho Francisco H. dos Santos

Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...

2003
Sanaz Mostaghim Jürgen Teich

In this paper, the influence of -dominance on Multi-objective Particle Swarm Optimization (MOPSO) methods is studied. The most important role of dominance is to bound the number of non-dominated solutions stored in the archive (archive size), which has influences on computational time, convergence and diversity of solutions. Here, -dominance is compared with the existing clustering technique fo...

Journal: :Fundam. Inform. 2009
Hongbo Liu Ajith Abraham Zuwen Wang

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm whereby the collective behaviors of unsophisticated individuals interacting locally with their environment cause coherent functional global patterns to emerge. In this paper, we model the scheduling problem for the multi-objective Flexible Job-shop Scheduling Problems (FJSP) and attempt to formulate and solve the problem ...

M. Bisheban M.J. Mahmoodabadi

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

Journal: :Entropy 2013
Eduardo José Solteiro Pires José António Tenreiro Machado Paulo B. de Moura Oliveira

Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly ...

2008
Juan Pedro Castro Gutiérrez Dario Landa Silva José A. Moreno-Pérez

This paper investigates the ability of a discrete particle swarm optimization algorithm (DPSO) to evolve solutions from infeasibility to feasibility for the Vehicle Routing Problem with Time Windows (VRPTW). The proposed algorithm incorporates some principles from multi-objective optimization to allow particles to conduct a dynamic trade-off between objectives in order to reach feasibility. The...

2005
Kazuhiro Izui Shinji Nishiwaki Masataka Yoshimura

1. Abstract Swarm algorithms such as Particle Swarm Optimization (PSO) are non-gradient probabilistic optimization algorithms that have been successfully applied to obtain global optimal solutions for complex problems such as multi-peak problems. However these algorithms have not been applied to complicated structural and mechanical optimization problems since local optimization capability is s...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید