نتایج جستجو برای: modular chromatic number
تعداد نتایج: 1215199 فیلتر نتایج به سال:
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...
let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors. we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$. we also determine exact value of this parameter for the cartesian product of ...
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
We introduce the incidence game chromatic number which unifies the ideas of game chromatic number and incidence coloring number of an undirected graph. For kdegenerate graphs with maximum degree ∆, the upper bound 2∆ + 4k − 2 for the incidence game chromatic number is given. If ∆ ≥ 5k, we improve this bound to the value 2∆ + 3k − 1. We also determine the exact incidence game chromatic number of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید