نتایج جستجو برای: missing at random

تعداد نتایج: 3947812  

Journal: :Statistical analysis and data mining 2017
Fei Tang Hemant Ishwaran

Random forest (RF) missing data algorithms are an attractive approach for imputing missing data. They have the desirable properties of being able to handle mixed types of missing data, they are adaptive to interactions and nonlinearity, and they have the potential to scale to big data settings. Currently there are many different RF imputation algorithms, but relatively little guidance about the...

Journal: :Structural equation modeling : a multidisciplinary journal 2014
Nisha C Gottfredson Daniel J Bauer Scott A Baldwin

In longitudinal research, interest often centers on individual trajectories of change over time. When there is missing data, a concern is whether data are systematically missing as a function of the individual trajectories. Such a missing data process, termed random coefficient-dependent missingness, is statistically non-ignorable and can bias parameter estimates obtained from conventional grow...

Journal: :Statistics and Computing 2012
Nicolas Städler Peter Bühlmann

We propose an l1-regularized likelihood method for estimating the inverse covariance matrix in the high-dimensional multivariate normal model in presence of missing data. Our method is based on the assumption that the data are missing at random (MAR) which entails also the completely missing at random case. The implementation of the method is non-trivial as the observed negative log-likelihood ...

Journal: :Biometrics 1998
S R Lipsitz M Parzen M Ewell

When there are many nuisance parameters in a logistic regression model, a popular method for eliminating these nuisance parameters is conditional logistic regression. Unfortunately, another common problem in a logistic regression analysis is missing covariate data. With many nuisance parameters to eliminate and missing covariates, many investigators exclude any subject with missing covariates a...

2002
Cheti Nicoletti Pierre Hoonhout

This paper stresses the links that exist between concepts that are used in the theory of model reduction and concepts that arise in the missing data literature. This connection motivates the extension of the missing at random (MAR) and the missing completely at random (MCAR) concepts from a static setting, as introduced by Rubin (1976), to the case of dynamic panel data models. Using this exten...

اعظم , کمال, جندقی , غلام رضا, محمد , کاظم, مشکانی , محمدرضا, نوری اله, کرامت , پاشا , عین اله, کریملو , مسعود,

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

2017
Lin Sun

COMPARISON OF DIFFERENT METHODS FOR LONGITUDINAL DATA WITH MISSING OBSERVATIONS Lin Sun July 27, 2010 Longitudinal studies occupy an important role in scientific researches and clinical trials. When taking the analysis of longitudinal data, investigators are often confronted with missing data which will produce potential biases, even in well-controlled condition. In the literature, missing data...

2017
M Smuk J R Carpenter T P Morris

BACKGROUND Within epidemiological and clinical research, missing data are a common issue and often over looked in publications. When the issue of missing observations is addressed it is usually assumed that the missing data are 'missing at random' (MAR). This assumption should be checked for plausibility, however it is untestable, thus inferences should be assessed for robustness to departures ...

2016
Ilya Shpitser

Missing records are a perennial problem in analysis of complex data of all types, when the target of inference is some function of the full data law. In simple cases, where data is missing at random or completely at random [15], well-known adjustments exist that result in consistent estimators of target quantities. Assumptions underlying these estimators are generally not realistic in practical...

2013
Christophe Genolini René Écochard Hélène Jacqmin-Gadda

Longitudinal studies are those in which the same variable is repeatedly measured at different times. These studies are more likely than others to suffer from missing values. Since the presence of missing values may have an important impact on statistical analyses, it is important that they should be dealt with properly. In this paper, we present “Copy Mean”, a new method to impute intermittent ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید