نتایج جستجو برای: methanogenesis

تعداد نتایج: 1586  

Journal: :FEBS letters 2012
William F Martin

Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemi...

2013
Patrick D. Browne Hinsby Cadillo-Quiroz

Methane-producing Archaea are of interest due to their contribution to atmospheric change and for their roles in technological applications including waste treatment and biofuel production. Although restricted to anaerobic environments, methanogens are found in a wide variety of habitats, where they commonly live in syntrophic relationships with bacterial partners. Owing to tight thermodynamic ...

2006
Angela H.A.M. van HOEK Theo A. van ALEN Godfried D. VOGELS Johannes H.P. HACKSTEIN

Biogenic methane contributes substantially to the atmospheric methane concentration and thus to global warming. This trace gas is predominantly produced by strictly anaerobic methanogenic archaea, which thrive in the most divergent ecological niches, e. g. paddy fields, sediments, landfills, and the digestive tract of various animals. Methanogenic archaea also live as endosymbionts in the cytop...

Journal: :Gut 1990
G R Gibson J H Cummings G T Macfarlane C Allison I Segal H H Vorster A R Walker

Hydrogen gas, which is produced during fermentation in the human colon, is either excreted in breath or metabolised by gut bacteria through a variety of pathways. These may include methanogenesis, dissimilatory sulphate reduction, and acetogenesis. To determine which of these routes predominates in the large intestine, stools were taken from 30 healthy subjects and incubated as 5% (w/v) slurrie...

2012
K. S. Inglett P. W. Inglett K. R. Reddy T. Z. Osborne

Organic matter decomposition regulates rates of carbon loss (CO2 and CH4) in wetlands and has implications for carbon sequestration in the context of changing global temperature. Here we determined the influence of temperature and vegetation type on both aerobic and anaerobic decomposition of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted i...

2018
Marco Rotiroti Rasmus Jakobsen Letizia Fumagalli Tullia Bonomi

The reductive dissolution of Fe-oxide driven by organic matter oxidation is the primary mechanism accepted for As mobilization in several alluvial aquifers. These processes are often mediated by microorganisms that require a minimum Gibbs energy available to conduct the reaction in order to sustain their life functions. Implementing this threshold energy in reactive transport modeling is rarely...

2009
Tina Treude Craig R. Smith Frank Wenzhöfer Erin Carney Angelo F. Bernardino Angelos K. Hannides Martin Krüger Antje Boetius

Deep-sea whale falls create sulfidic habitats supporting chemoautotrophic communities, but microbial processes underlying the formation of such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the Califor...

Journal: :Applied and environmental microbiology 2003
Razvan Dumitru Hector Palencia Scott D Schroeder Bree A DeMontigny James M Takacs Madeline E Rasche Jess L Miner Stephen W Ragsdale

This paper describes the design, synthesis, and successful employment of inhibitors of 4-(beta-D-ribofuranosyl)aminobenzene-5'-phosphate (RFA-P) synthase, which catalyzes the first committed step in the biosynthesis of methanopterin, to specifically halt the growth of methane-producing microbes. RFA-P synthase catalyzes the first step in the synthesis of tetrahydromethanopterin, a key cofactor ...

Journal: :Applied and environmental microbiology 1981
K A Sandbeck D M Ward

The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-C]acetate was predominantly incorporated into cell material, although some CH(4) and CO(2) was produced. Acetate incorporation was reduced by dark incubation in short-t...

2016
Dang Ho Paul Jensen Maria-Luisa Gutierrez-Zamora Sabrina Beckmann Mike Manefield Damien Batstone

A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA-stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methano...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید